Мы поможем в написании ваших работ!



ЗНАЕТЕ ЛИ ВЫ?

Действия с векторами в координатах

Поиск

В первой части урока мы рассматривали правила сложения векторов и умножения вектора на число. Но рассматривали их с принципиально-графической точки зрения. Посмотрим, как данные правила работают аналитически – когда заданы координаты векторов:

1) Правило сложения векторов. Рассмотрим два вектора плоскости и . Для того, чтобы сложить векторы, необходимо сложить их соответствующие координаты: . Как просто. На всякий случай запишу частный случай – формулу разности векторов: . Аналогичное правило справедливо для суммы любого количества векторов, добавим например, вектор и найдём сумму трёх векторов:

Если речь идёт о векторах в пространстве, то всё точно так же, только добавится дополнительная координата. Если даны векторы , то их суммой является вектор .

2) Правило умножения вектора на число. Ещё проще! Для того чтобы вектор умножить на число , необходимо каждую координату данного вектора умножить на число :
.

Для пространственного вектора правило такое же:

Приведённые факты строго доказываются в курсе аналитической геометрии.

Примечание: Данные правила справедливы не только для ортонормированных базисов , но и для произвольного аффинного базиса плоскости или пространства. Более подробно о базисах читайте в статье Линейная (не) зависимость векторов. Базис векторов.

Пример 7

Даны векторы и . Найти и

Решение чисто аналитическое:

Ответ:

Чертеж в подобных задачах строить не надо, тем не менее, геометрическая демонстрация будет весьма полезной. Если считать, что векторы заданы в ортонормированном базисе , то графическое решение задачи будет таким:

Коль скоро речь идет только о векторах в ортонормированном базисе, то оси рисовать не обязательно. Достаточно начертить базисные векторы, причём, где угодно. Ну, и координатную сетку для удобства. Строго говоря, ранее я допустил небольшой огрех – в некоторых чертежах урока тоже можно было не чертить декартову прямоугольную систему координат. Векторам она не нужна, им нужен базис. Впрочем, лучше всегда рисуйте, а то напугаете всех своими знаниями =)

Как видите, графический способ решения привёл к тем же результатам, что и аналитический способ решения. Ещё раз заметьте свободу векторов: любую из трёх «конструкций» можно переместить в любую точку плоскости.

Для векторов в пространстве можно провести аналогичные выкладки. Но там чертежи строить значительно сложнее, поэтому ограничусь аналитическим решением (на практике, собственно, бОльшего и не надо):

Пример 8

Даны векторы и . Найти и

Решение: Для действий с векторами справедлив обычный алгебраический приоритет: сначала умножаем, потом складываем:

Ответ:

И в заключение занятный пример с векторами на плоскости:

Пример 9

Даны векторы . Найти и

Это задача для самостоятельного решения.

Какой вывод? Многие задачи аналитической геометрии прозрачны и просты, главное, не допустить вычислительных ошибок. Следующие рекомендуемые к изучению уроки:

!!! Скалярное произведение векторов
Линейная (не) зависимость векторов. Базис векторов
Векторное и смешанное произведение векторов

Это, так скажем, вектор-минимум студента =)

Любите векторы, и векторы полюбят вас!

Решения и ответы:

Задание: ,

Пример 2: Решение:
а)

б)

в)

г)

Пример 4: Решение:
По соответствующей формуле: и

Ответ:

 



Поделиться:


Последнее изменение этой страницы: 2016-12-14; просмотров: 712; Нарушение авторского права страницы; Мы поможем в написании вашей работы!

infopedia.su Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Обратная связь - 3.141.21.199 (0.005 с.)