Заглавная страница Избранные статьи Случайная статья Познавательные статьи Новые добавления Обратная связь FAQ Написать работу КАТЕГОРИИ: АрхеологияБиология Генетика География Информатика История Логика Маркетинг Математика Менеджмент Механика Педагогика Религия Социология Технологии Физика Философия Финансы Химия Экология ТОП 10 на сайте Приготовление дезинфицирующих растворов различной концентрацииТехника нижней прямой подачи мяча. Франко-прусская война (причины и последствия) Организация работы процедурного кабинета Смысловое и механическое запоминание, их место и роль в усвоении знаний Коммуникативные барьеры и пути их преодоления Обработка изделий медицинского назначения многократного применения Образцы текста публицистического стиля Четыре типа изменения баланса Задачи с ответами для Всероссийской олимпиады по праву Мы поможем в написании ваших работ! ЗНАЕТЕ ЛИ ВЫ?
Влияние общества на человека
Приготовление дезинфицирующих растворов различной концентрации Практические работы по географии для 6 класса Организация работы процедурного кабинета Изменения в неживой природе осенью Уборка процедурного кабинета Сольфеджио. Все правила по сольфеджио Балочные системы. Определение реакций опор и моментов защемления |
Торговля опционами / Часть I. Введение в опционы / глава 10. ГрекиСодержание книги
Поиск на нашем сайте
С использованием формулы Блэка-Шоулза, трейдер, работающий с опционами, может оценивать потенциальную прибыль и свои риски. Эти параметры, являющиеся промежуточными результатами расчетов по этой формуле, называются «греками» («Greeks») согласно буквам греческого алфавита. Мы намеренно не обращаемся к математическим вычислениям «греков» в рамках нашего обучения из-за их сложности. Читателю достаточно просто знать, что греки вычисляются в промежуточных вычислениях формулы Блэка-Шоулза, и имеют свою экономическую трактовку. Дельта – один из важнейших промежуточных результатов нашей формулы. Он измеряет чувствительность рассчитываемой стоимости опциона к незначительным колебаниям цены базового актива. Часто называется «хеджевым коэффициентом» (hedge ratio). Дельту мы можем воспринимать как чувствительность опциона к движению базового актива. Так, опцион, имеющий дельту, равную 0.7, на каждое изменение базового актива на пункт, будет прибавлять или терять 0.7 пункта к своей стоимости. Опционы, находящиеся глубоко «в деньгах» обычно имеют крупные дельты, а потому могут практически как базовый актив изменять свою стоимость. Еще дельту можно использовать как определенную вероятность, что при экспирации опцион окажется «в деньгах». В таком случае у опциона с дельтой 0.4 есть 40% шанс оказаться «в деньгах» на момент экспирации. Для опциона колл дельта всегда положительна и монотонно растет от 0% до 100% при увеличении цены базового актива. Опцион пут всегда имеет отрицательную дельту, изменяющуюся от -100% до 0% при увеличении цены актива. Ро измеряет чувствительность рассчитываемой цены опциона к изменению процентных ставок (по мере роста процентных ставок, по опционам пут премия падает, а по опционам колл увеличивается). Ро принимает положительные значения для опционов колл и негативные для опционов пут. Минимальное значение Ро имеют опционы «глубоко вне денег», а максимальное — опционы «глубоко в деньгах». Более высокое значение Ро имеют долгосрочные опционы, тогда как у краткосрочных опционов Ро приближается к 0. Тэта является параметром, отражающим «разрушительное действие времени». Как мы знаем, для продавца опционов время является союзником, а для покупателя – врагом (имеется ввиду нехватка времени). Во время продажи опциона тэта принимает положительные значения. А при покупке она будет принимать отрицательные значения, отражая сумму, на которую станет снижаться цена опциона. К примеру, тэта, равная -0.23 означает, что цена опциона будет снижаться на 23 пункта в день. Разделив временную стоимость опциона на число дней до его истечения можно получить грубое значение тэты. Для долгосрочных опционов тэта приближается к нулю. Тогда как опционы с небольшими сроками исполнения имеют максимальные значения тэты. Вега является мерой чувствительности рассчитываемой цены производного финансового инструмента к небольшим колебаниям волатильности базового инструмента. Волатильность базовых акций и размер премии по опциону изменяются в одном направлении. Для опционов «глубоко в деньгах» или «глубоко вне денег» вега стремиться к нулю, а для опционов «около денег» принимает максимальное значение. Гамма – параметр, измеряющий скорость изменения дельты в результате небольших колебаний цены базового актива. В максимальном значении гамма находится в случае, когда цена базового актива приближена к цене страйк и стремится к нулю, минимуму, в случае, когда цена базового актива начинает удаляться в любую сторону от цены страйк опциона. Таким образом, опционы «глубоко в деньгах» или «глубоко вне денег» имеют гамму, близкую к 0. Время существенно влияет на гамму. Для опционов «в деньгах», находящихся за месяц до срока экспирации, гамма практически равна нулю. Таким образом, риск владения этими опционами в приближающийся к исполнению срок экспоненциально растет. Более стабильна гамма у опционов в положении «вне денег» или «глубоко в деньгах». Вторая часть нашего обучения опционам будет посвящена опционными стратегиями. Это очень важная для изучения тема. Ведь без знания стратегий, заработать на торговле опционами практически невозможно.
|
||||
Последнее изменение этой страницы: 2016-12-28; просмотров: 347; Нарушение авторского права страницы; Мы поможем в написании вашей работы! infopedia.su Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Обратная связь - 18.117.158.203 (0.005 с.) |