Заглавная страница Избранные статьи Случайная статья Познавательные статьи Новые добавления Обратная связь FAQ Написать работу КАТЕГОРИИ: АрхеологияБиология Генетика География Информатика История Логика Маркетинг Математика Менеджмент Механика Педагогика Религия Социология Технологии Физика Философия Финансы Химия Экология ТОП 10 на сайте Приготовление дезинфицирующих растворов различной концентрацииТехника нижней прямой подачи мяча. Франко-прусская война (причины и последствия) Организация работы процедурного кабинета Смысловое и механическое запоминание, их место и роль в усвоении знаний Коммуникативные барьеры и пути их преодоления Обработка изделий медицинского назначения многократного применения Образцы текста публицистического стиля Четыре типа изменения баланса Задачи с ответами для Всероссийской олимпиады по праву Мы поможем в написании ваших работ! ЗНАЕТЕ ЛИ ВЫ?
Влияние общества на человека
Приготовление дезинфицирующих растворов различной концентрации Практические работы по географии для 6 класса Организация работы процедурного кабинета Изменения в неживой природе осенью Уборка процедурного кабинета Сольфеджио. Все правила по сольфеджио Балочные системы. Определение реакций опор и моментов защемления |
Механические волны. Кинематическое и динамическое уравнения волны.Содержание книги
Похожие статьи вашей тематики
Поиск на нашем сайте
В широком смысле, под волной понимают процесс распространения в пространстве колебаний или возмущений состояния вещества или поля с течением времени. Выделяют три типа волн: волны на поверхности жидкости, упругие (иначе механические) и электромагнитные. Рассмотрим механические волны, т.е. процессы распространения механических возмущений в упругой среде. Таким образом, в волновом процессе не происходит переноса массы. От частицы к частице передается только колебательное движение, а значит, и энергия.Перенос энергии без переноса вещества – это основное свойство всех волн, независимо от их природы. Волны бывают продольные, если колебания частиц среды происходят вдоль направления распространения, и поперечные, если направление колебаний перпендикулярно вектору скорости волны. Очевидно, что в случае продольных волн в среде возникают деформации сжатия и разрежения, которые в свою очередь приводят к образованию локальных областей сгущения и разрежения вещества, т.е. области повышенного и пониженного давления. Такие волны могут возникать в любых средах: в газах, жидкостях и твердых телах. Поперечные механические волны обусловлены деформациями сдвига. Это означает, что они могут существовать только в твердых телах. Геометрическое место точек (поверхность), до которых колебания дошли к некоторому моменту времени, называется фронтом волны. В зависимости от формы фронта волны бывают: плоские, сферические, цилиндрические и т.д. Поверхность, точки которой имеют одно и то же значение фазы, называется волновой поверхностью. Волновых поверхностей бесчисленное множество, а фронт волны всегда один. УРАВНЕНИЕ БЕГУЩЕЙ ВОЛНЫ Получим уравнение плоской волны в однородной среде вдоль оси 0х, совпадающей с направлением её распространения. Т.к., в этом случае фронт волны перпендикулярен 0х, то смещения s частиц среды будут зависеть только от координаты х и момента времени t, т.е. уравнение волны будет представлять собой функцию – s = f(x,t). Пред-положим, что в точке 0 (рис.1) частица совершает колебания по гармоническому закону: s = Acosωt. s = A cosω(t-τ) (1) Если обозначить скорость волны через u, то время запаздывания, за которое волна добежит от точки 0 до точки М: τ = х/u, и уравнение колебаний в произвольной точке М на расстоянии х от источника примет вид: s= A cos ω(t-τ) = A cos ω(t - ). (2) Это и есть искомое уравнение плоской бегущей волны. Здесь: А – амплитуда смещения частиц среды от положения равновесия, ω – циклическая частота колебаний частиц, ω(t - ) – фаза колебаний в точке с координатой х, u – скорость плоской волны. Расстояние между ближайшими частицами среды, колеблющимися в одинаковой фазе, называется длиной волны λ (рис.1). Длина волны равна расстоянию, на которое распространяется определенная фаза колебаний за период колебаний частиц среды. Тогда λ = u·T = u /ν. Т.к. ω = 2πν, то (2) можно переписать в виде: s = Acosω(t - ) = Acos2π(v t - ) = Acos(ωt - 2π ). (3) Покажем, что скорость распространения волны u – это скорость перемещения фиксированного значения фазы. Положим ω(t – ) = С, т.е. const. Выразим х: х = u t - C u /ω. Продифференцировав это выражение по t, получим: (С, u, ω – величины постоянные для данной среды). Т.е. u – это скорость, с которой перемещается данное значение фазы. По этой причине скорость волны называют также фазовой скоростью. Скорость распространения механических волн зависит от физических свойств среды. Скорость распространения продольных волн определяется формулой: . Для поперечных волн – . Здесь r – плотность недеформированной среды, Е – модуль Юнга, G – модуль сдвига. Е и G – параметры упругости среды. Основные свойства волн: прямолинейность распространения в однородной среде, отражение и преломление на границе раздела сред, дисперсия, интерференция и дифракция. ВОЛНОВОЕ УРАВНЕНИЕ
; . (5)
В трехмерном случае:
|
||||
Последнее изменение этой страницы: 2016-12-12; просмотров: 888; Нарушение авторского права страницы; Мы поможем в написании вашей работы! infopedia.su Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Обратная связь - 18.225.156.91 (0.006 с.) |