Мы поможем в написании ваших работ!



ЗНАЕТЕ ЛИ ВЫ?

Механические волны. Кинематическое и динамическое уравнения волны.

Поиск

В широком смысле, под волной понимают процесс распространения в пространстве колебаний или возмущений состояния вещества или поля с течением времени. Выделяют три типа волн: волны на поверхности жидкости, упругие (иначе механические) и электромагнитные. Рассмотрим механические волны, т.е. процессы распространения механических возмущений в упругой среде.

Таким образом, в волновом процессе не происходит переноса массы. От частицы к частице передается только колебательное движение, а значит, и энергия.Перенос энергии без переноса вещества – это основное свойство всех волн, независимо от их природы.

Волны бывают продольные, если колебания частиц среды происходят вдоль направления распространения, и поперечные, если направление колебаний перпендикулярно вектору скорости волны. Очевидно, что в случае продольных волн в среде возникают деформации сжатия и разрежения, которые в свою очередь приводят к образованию локальных областей сгущения и разрежения вещества, т.е. области повышенного и пониженного давления. Такие волны могут возникать в любых средах: в газах, жидкостях и твердых телах. Поперечные механические волны обусловлены деформациями сдвига. Это означает, что они могут существовать только в твердых телах.

Геометрическое место точек (поверхность), до которых колебания дошли к некоторому моменту времени, называется фронтом волны. В зависимости от формы фронта волны бывают: плоские, сферические, цилиндрические и т.д.

Поверхность, точки которой имеют одно и то же значение фазы, называется волновой поверхностью. Волновых поверхностей

бесчисленное множество, а фронт волны всегда один.

УРАВНЕНИЕ БЕГУЩЕЙ ВОЛНЫ

Получим уравнение плоской волны в однородной среде вдоль оси , совпадающей с направлением её распространения. Т.к., в этом случае фронт волны перпендикулярен , то смещения s частиц среды будут зависеть только от координаты х и момента времени t, т.е. уравнение волны будет представлять собой функцию – s = f(x,t). Пред-положим, что в точке 0 (рис.1) частица совершает колебания по гармоническому закону: s = Acosωt. s = A cosω(t-τ) (1)

Если обозначить скорость волны через u, то время запаздывания, за которое волна добежит от точки 0 до точки М: τ = х/u, и уравнение колебаний в произвольной точке М на расстоянии х от источника примет вид:

s= A cos ω(t-τ) = A cos ω(t - ). (2)

Это и есть искомое уравнение плоской бегущей волны. Здесь: А – амплитуда смещения частиц среды от положения равновесия, ω – циклическая частота колебаний частиц, ω(t - ) – фаза колебаний в точке с координатой х, u – скорость плоской волны.

Расстояние между ближайшими частицами среды, колеблющимися в одинаковой фазе, называется длиной волны λ (рис.1).

Длина волны равна расстоянию, на которое распространяется определенная фаза колебаний за период колебаний частиц среды. Тогда λ = u·T = u /ν. Т.к. ω = 2πν, то (2) можно переписать в виде:

s = Acosω(t - ) = Acos2π(v t - ) = Acos(ωt - 2π ). (3)

Покажем, что скорость распространения волны u – это скорость перемещения фиксированного значения фазы. Положим ω(t – ) = С, т.е. const. Выразим х: х = u t - C u /ω. Продифференцировав это выражение по t, получим: (С, u, ω – величины постоянные для данной среды). Т.е. u – это скорость, с которой перемещается данное значение фазы. По этой причине скорость волны называют также фазовой скоростью.

Скорость распространения механических волн зависит от физических свойств среды. Скорость распространения продольных волн определяется формулой: . Для поперечных волн – . Здесь r – плотность недеформированной среды, Е – модуль Юнга, G – модуль сдвига. Е и G – параметры упругости среды.

Основные свойства волн: прямолинейность распространения в однородной среде, отражение и преломление на границе раздела сред, дисперсия, интерференция и дифракция.

ВОЛНОВОЕ УРАВНЕНИЕ

 

; . (5)

 

В трехмерном случае:

 



Поделиться:


Последнее изменение этой страницы: 2016-12-12; просмотров: 888; Нарушение авторского права страницы; Мы поможем в написании вашей работы!

infopedia.su Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Обратная связь - 3.138.134.221 (0.008 с.)