Энергия колебательного механического движения. Превращения энергии при колебаниях.



Мы поможем в написании ваших работ!


Мы поможем в написании ваших работ!



Мы поможем в написании ваших работ!


ЗНАЕТЕ ЛИ ВЫ?

Энергия колебательного механического движения. Превращения энергии при колебаниях.



Рассмотрим процесс колебательного движения с энергетической точки зрения. Смещая тело из положения равновесия, мы деформируем пружину, сообщая тем самым системе запас потенциальной энергии. Отпустив тело, мы даем ему возможность двигаться к положению равновесия. При этом потенциальная энергия системы превращается в кинетическую. В момент прохождения положения равновесия потенциальная энергия полностью превращается в кинетическую. Продолжая движение по инерции, тело опять деформирует пружину, т.е. кинетическая энергия начинает превращаться в потенциальную. В момент, когда кинетическая энергия полностью превра тится в потенциальную, смещение достигнет амплитудного значения, тело остановится и начнет двигаться обратно. Опять потенциальная энергия будет превращаться в кинетическую и т.д. (рис.4). Т.о., с точки зрения энергетической, механическое колебание – это процесс многократных, последовательных превращений потенциальной энергии в кинетическую и обратно.

, (10)

, (11)

, (12)

 

т.е. полная энергия системы величина постоянная.

 

Затухающие колебания. Дифференциальное и кинематическое уравнения затухающего колебания. Коэффициент затухания, декремент затухания, логарифмический декремент затухания.

В реальных условиях, кроме возвращающей силы в колебательной системе обязательно будет действовать и сила сопротивления. Будем считать, что скорости движения при колебаниях будут небольшими, тогда сила сопротивления прямо пропорциональна скорости:

, (13)

где r –коэффициент сопротивления. Учитывая только силу сопротивления (13) и силу упругости (1) согласно II закону Ньютона для уравнения движения получим:

, (14) . (15)

Разделив правую и левую часть (15) на m и обозначив k/m = , а r/m = 2β, получим:

или . (16).

Это однородное дифференциальное уравнение второго порядка с постоянными коэффициентами. Движение будет колебательным, только если b2 < w . При этом условии корни (17) будут комплексными числами и решением уравнения (16) будет периодическая функция.

Теперь решением уравнения (16) будет функция:

 

s= е-βt1cosωt + C2sinωt).

 

Заменяя С1 = А0cosφ0, а С2 = А0sinφ0 окончательно получим:

 

s = А0еβtcos(ωt + φ) (18).

 

Это уравнение свободных затухающих колебаний.Как видно амплитуда свободных затухающих колебаний убывает по экспоненциальному закону: А = А0 е−βt ,

Круговая частота этого колебания w = , а период Т = 2π / . Как видно, ни частота, ни период затух. колебаний не равны соответствующим параметрам собственных колебаний системы.

Для описания быстроты затухания колебаний используют три взаимосвязанные величины: коэффициент затухания – β, декремент затухания – δ и лог. декремент затухания – l = ℓnd = ℓnеβТ = βТ. Коэффициент затухания b = , [b] = 1/с. Декремент затухания –

(20)



Последнее изменение этой страницы: 2016-12-12; Нарушение авторского права страницы; Мы поможем в написании вашей работы!

infopedia.su Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Обратная связь - 18.206.177.17 (0.009 с.)