Твердые тела. Кристаллические и аморфные твердые тела. 


Мы поможем в написании ваших работ!



ЗНАЕТЕ ЛИ ВЫ?

Твердые тела. Кристаллические и аморфные твердые тела.



Твердое тело – агрегатное состояние вещества, для которого характерно наличие значительных сил межмолекулярного взаимодействия, стабильность формы и объема. Тепловое движение частиц твердого тела представляет собой небольшие по амплитуде колебания около положений равновесия. Различают кристаллическое и аморфное строение твердых тел.

Аморфные твердые тела по многим своим свойствам и главным образом по микроструктуре следует рассматривать как сильно переохлажденные жидкости с очень высоким коэффициентом вязкости. Структура таких тел характеризуется только ближним порядком в расположении частиц. Некоторые из таких веществ вообще не способны кристаллизоваться: воск, сургуч, смолы. Другие при определённом режиме охлаждения образуют кристаллические структуры, но в случае быстрого охлаждения рост вязкость препятствует упорядочению в расположении частиц. Вещество затвердевает раньше, чем реализуется процесс кристаллизации. Такие тела называются стеклообразными: стекло, лёд. Процесс кристаллизации в таком веществе может произойти и после затвердевания (помутнение стёкол). К аморфным относят и твёрдые органические вещества: резина, дерево, кожа, пластмассы, шерстяные, хлопковые и шёлковые волокна. Процесс перехода таких веществ из жидкой фазы в твёрдую представлен на рис. – кривая I.

Аморфные тела не имеют температуры затвердевания (плавления). На графике Т = f(t) имеется точка перегиба, которую называют температурой размягчения. Снижение температуры приводит к постепенному росту вязкости. Такой характер перехода в твёрдое состояние, обуславливает отсутствие у аморфных веществ удельной теплоты плавления. Обратный переход, когда теплота подводится, происходит плавное размягчение до состояния жидкости. По форме ячейки в зависимости от углов между ее гранями α, β и γ и соотношением между длиной ребер а, б и с эти 14 типов решеток образуют семь кристаллических систем (сингоний): кубическую, гексогональную, тетрагональную, тригональную или ромбоэдрическую, ромбическую, моноклинную и тригональную.

Кристаллические тела можно разделить на две группы: монокристаллы и поликристаллы. Для монокристаллов наблюдается единая кристаллическая решетка в объеме всего тела. И хотя внешняя форма монокристаллов одного вида может быть разной, углы между соответствующими гранями будут всегда одинаковыми. Характерной особенностью монокристаллов является анизотропия механических, тепловых, электрических, оптических и др. свойств.

Монокристаллы нередко встречаются в естественном состоянии в природе. Например, большинство минералов – хрусталь, изумруды, рубины.

Один и тот же химический элемент может образовать несколько, отличающихся по геометрии, кристаллических структур. Это явление получило название - полиморфизма. Например, углерод – графит и алмаз; лед пять модификаций и др.

Правильная внешняя огранка и анизотропия свойств, как правило, не проявляются для кристаллических тел. Это объясняется тем, что кристаллические твердые тела обычно состоят из множества беспорядочно ориентированных мелких кристалликов. Такие твердые тела называются поликристаллическими. Связано это с механизмом кристаллизации: при достижении необходимых для этого процесса условий, очаги кристаллизации одновременно возникают во множестве мест исходной фазы. Зародившиеся кристаллы расположены и ориентированы друг по отношению к другу совершенно произвольно.

Кристаллические тела имеют точку плавления – температуру, когда вещество устойчиво существует в двух фазах – твёрдой и жидкой (рис. кривая 2). Переход молекулы твердого тела в жидкость означает, что она приобретает дополнительно три степени свободы поступательного движения. Т.о. единица массы вещества при Тпл. в жидкой фазе имеет большую внутреннюю энергию, чем такая же масса в твердой фазе. Кроме того, меняется расстояние между частицами. Поэтому в целом количество теплоты необходимое для превращения единицы массы кристаллического вещества в жидкость будет:

λ = (Uж-Uкр ) + P (Vж-Vкр ),

где λ – удельная теплота плавления (кристаллизации), (Uж-Uкр) – разность внутренних энергий жидкой и кристаллической фаз, Р – внешнее давление, (Vж-Vкр) – разность удельных объемов. Согласно уравнению Клапейрона - Клаузиуса температура плавления зависит от давления:

.

Видно, что если (Vж-Vкр)> 0, то > 0, т.е. с ростом давления температура плавления повышается. Если же объем вещества при плавлении уменьшается (Vж-Vкр)< 0 (вода, висмут) - рост давления приводит к понижению Тпл.

У аморфных тел теплота плавления отсутствует. Нагревание приводит к постепенному увеличению скорости теплового движения и уменьшению вязкости. На графике процесса имеется точка перегиба (рис.), которую условно называют температурой размягчения.

 

Электрическое поле. Закон Кулона. Основные характеристики поля: напряженность и потенциал. Связь между ними. Энергия, объемная плотность энергии электрического поля.

Несмотря на разнообразие веществ, в природе существует только два вида электрических зарядов. Один из них условно называют отрицательным, а второй – положительным. Электрический заряд тела не зависит от того движется тело или покоится. Электрический заряд любого тела дискретен и кратен элементарному e = 1,6 ∙10-19.

q = Ne (1).

В основе электростатики лежит закон Кулона, который определяет силу взаимодействия двух точечных зарядов q1 и q2, расположенных на расстоянии r1,2 друг от друга:

, (2)

где ε0 = 8,85·10-12 Ф/м – диэлектрическая постоянная; ε – диэлектрическая проницаемость среды.

ЭЛЕКТРОСТАТИЧЕСКОЕ ПОЛЕ

Согласно представлениям современной физики воздействие одного заряда на другой передается через электростатическое поле – особую бесконечно простирающуюся материальную среду, которую создает вокруг себя каждое заряженное тело. Т.к. направление силы зависит от знака заряда, то условились использовать для исследования полей, так называемый, пробный заряд q0. Это положительный, точечный заряд, который помещают в интересующую нас точку электрического поля. Соответственно в качестве силовой характеристики поля целесообразно использовать отношение силы к величине пробного заряда q0:

. (3)

Эта постоянная для каждой точки поля векторная величина равная силе, действующей на единичный, положительный заряд называется напряженностью. Для поля точечного заряда q на расстоянии r от него:

, (4)

Направление вектора совпадает с направлением силы, действующей на пробный заряд. [E] = Н / Кл или В/м.

При наложении друг на друга нескольких электростатических полей, результирующая напряженность определяется как векторная сумма напряженностей каждого из полей (принцип суперпозиции):

. (6)

Графически распределение электрического поля в пространстве изображается с помощью силовых линий. Эти линии проводятся так, чтобы касательные к ним в любой точке совпадали с . Это означает, что вектор силы, действующей на заряд, а значит и вектор его ускорения, тоже лежат на касательных к силовым линиям, которые нигде и никогда не пересекаются. Силовые линии электростатического поля не могут быть замкнутыми. Они начинаются на положительном и заканчиваются на отрицательном зарядах или уходят в бесконечность.



Поделиться:


Последнее изменение этой страницы: 2016-12-12; просмотров: 259; Нарушение авторского права страницы; Мы поможем в написании вашей работы!

infopedia.su Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Обратная связь - 18.118.184.237 (0.006 с.)