Заглавная страница Избранные статьи Случайная статья Познавательные статьи Новые добавления Обратная связь FAQ Написать работу КАТЕГОРИИ: АрхеологияБиология Генетика География Информатика История Логика Маркетинг Математика Менеджмент Механика Педагогика Религия Социология Технологии Физика Философия Финансы Химия Экология ТОП 10 на сайте Приготовление дезинфицирующих растворов различной концентрацииТехника нижней прямой подачи мяча. Франко-прусская война (причины и последствия) Организация работы процедурного кабинета Смысловое и механическое запоминание, их место и роль в усвоении знаний Коммуникативные барьеры и пути их преодоления Обработка изделий медицинского назначения многократного применения Образцы текста публицистического стиля Четыре типа изменения баланса Задачи с ответами для Всероссийской олимпиады по праву Мы поможем в написании ваших работ! ЗНАЕТЕ ЛИ ВЫ?
Влияние общества на человека
Приготовление дезинфицирующих растворов различной концентрации Практические работы по географии для 6 класса Организация работы процедурного кабинета Изменения в неживой природе осенью Уборка процедурного кабинета Сольфеджио. Все правила по сольфеджио Балочные системы. Определение реакций опор и моментов защемления |
Тепловой эффект химической реакцииСодержание книги
Поиск на нашем сайте
Тепловой эффект химической реакции – изменение энергии системы в результате протекания химической реакции при условии, что система не совершает никакой другой работы, кроме работы расширения. Если в результате реакции теплота выделяется, т.е. энтальпия системы понижается (∆Н <0), то реакция называется экзотермической. Реакция, протекающая с поглощением теплоты, т.е. с повышением энтальпии (∆Н >0), называется эндотермической. Тепловой эффект химической реакции при постоянном давлении называют энтальпией химической реакции. Тепловой эффект, приведенный к стандартным термодинамическим условиям, называется стандартным изменением энтальпии реакции (∆ Н о298, реакции). Термохимические расчеты Закон Гесса. Тепловой эффект химической реакции зависит от природы и состояния исходных веществ и конечных продуктов, но не зависит от пути реакции, т.е. от числа и характера промежуточных стадий. + О2(г)
СО(г)
Например, процесс окисления углерода С(тв) до СО2(г) можно осуществить как через стадию непосредственного сгорания углерода до углекислого газа с тепловым эффектом ∆Н (путь I), так и через стадию образования промежуточного продукта − окиси углерода − СО(г) с тепловым эффектом ∆Н 1, с последующим окислением СО(г) до СО2(г) с тепловым эффектом ∆Н 2 (путь II) в соответствии с уравнениями реакций: С(тв) + О2(г) СО2(г), ∆Н (I)
С(тв) + ½О2(г) СО(г), ∆Н 1 СО(г) + ½О2(г) СО(г), ∆Н 2 (II) -------------------------------------------------- С(тв) + О2(г) СО2(г), ∆Н 1+ ∆Н 2. Из сопоставления тепловых эффектов реакций следует, что ∆Н = ∆Н 1+ ∆Н 2, т.е. каким бы путем не осуществлялась реакция, ее тепловой эффект будет одинаков, если не меняется конечное и исходное состояния системы. Закон Гесса позволяет рассчитать энтальпию химических реакций. Энтальпия химической реакции ∆Н о298,реакции равна разнице суммы стандартных энтальпий образования продуктов реакции и исходных веществ с учетом стехиометрических коэффициентов: ∆Н о298,реакции=∑ ∆Н о298,продукты реакции –∑ ∆Н о298,исходные вещества. В общем случае, для реакции в стандартных условиях аА(г) + bВ(г) → сС(г) + dD(г), ∆Н о298,реакции =[c ∆Н оC(г)+d ∆Н оD(г)]−[a∆НоA(г)+b ∆Н оB(г)], кДж, где ∆Н о298,реакции – энтальпия химической реакции, кДж; ∆Н оА(г), ∆Н оВ(г), ∆Н оС(г), ∆Н оD(г)) – стандартные значения энтальпий образования веществ, участвующих в реакции, кДж/моль; а, b, c, d – стехиометрические коэффициенты в уравнении реакции. Можно также рассчитать значение стандартной энтальпии образования одного из исходных веществ или продуктов, если известны энтальпии образования остальных реагентов и энтальпия химической реакции. Например, для реакции аА(г) + bВ(г) → сС(г) + dD(г), ∆Н о298,реакции>0. ∆Н оA(г) =c ∆Н оC(г)+d ∆Н оD(г)−b ∆Н оB(г)− ∆Н о298,реакции, кДж/моль А(г). Зная теплоты образования веществ, можно определить и их теплоты разложения по закону Лавуазье-Лапласа: При разложении сложного вещества на простые поглощается (или выделяется) столько же теплоты, сколько выделяется (или поглощается) при его образовании из простых веществ в тех же условиях. Так, если Н2О(г) → Н2(г) + ½О2(г), ∆Н о298,реакции=241,8 кДж, то Н2(г) + ½О2(г) → Н2О(г), ∆Н о298,реакции=−241,8 кДж. 3.7. Понятие об энтропии и второй закон термодинамики Первый закон термодинамики позволяет определить тепловые эффекты химических реакций (но не направление реакций в данных условиях). Датский химик Ю. Томсен, а затем французский химик М. Бертло высказали предположение о том, что химические процессы самопроизвольно идут только с выделением теплоты, т.е. с уменьшением энтальпии системы (с экзотермическим эффектом, ∆Н < 0). Однако известно много примеров, когда химические реакции самопроизвольно протекают с поглощением теплоты, и, более того, одни и те же реакции в зависимости от условий могут идти как в прямом, так и в обратном направлениях. Решить вопрос о направлении химической реакции в данных условиях можно на основании закономерностей, вытекающих из второго закона термодинамики (и, в первую очередь, представления о термодинамической функции состояния, называемой энтропией).
|
|||||
Последнее изменение этой страницы: 2016-12-11; просмотров: 319; Нарушение авторского права страницы; Мы поможем в написании вашей работы! infopedia.su Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Обратная связь - 3.15.229.217 (0.005 с.) |