Признаки принадлежности точки и прямой плоскости 


Мы поможем в написании ваших работ!



ЗНАЕТЕ ЛИ ВЫ?

Признаки принадлежности точки и прямой плоскости

Поиск

 

Для определения принадлежности точки и прямой плоскости, расположенной в пространстве, следует руководствоваться следующими ' положениями:

· точка принадлежит плоскости, если через нее можно провести линию, лежащую в плоскости;

· прямая принадлежит плоскости, если она имеет с плоскостью хотя бы две общие точки;

· прямая принадлежит плоскости, если она проходит через точку данной плоскости параллельно прямой, принадлежащей этой плоскости.

Через одну точку на плоскости можно провести бесконечное множество линий. Это могут быть произвольные линии и линии, занимающие особое положение по отношению к плоскостям проекций П1 П2, П3.Прямая, принадлежащая рассматриваемой плоскости, проведенная параллельно горизонтальной плоскости проекций, называется горизонталью плоскости.

Прямая, принадлежащая рассматриваемой плоскости, проведенная параллельно фронтальной плоскости проекций, называется фронталью плоскости.

Горизонталь и фронталь являются линиями уровня.

Горизонталь плоскости следует начинать строить с фронтальной проекции, т.к. она параллельна оси x, горизонтальная проекция горизонтали параллельна горизонтальному следу плоскости.

А так как все горизонтали плоскости параллельны между собой, можно считать горизонтальный след плоскости нулевой горизонталью (рис. 5.8).

Фронталь плоскости следует начинать строить с горизонтальной проекции, т.к. она параллельна оси x, фронтальная проекция фронтали параллельна фронтальному следу. Фронтальный след плоскости -нулевая фронталь. Все фронтали плоскости параллельны между - собой (рис. 5.9).

 

 

К линии уровня относится и профильная прямая, лежащая в заданной плоскости и параллельная П3.

К главным линиям особого положения в плоскости, кроме линии уровня, относятся линии наибольшего наклона плоскости к плоскости проекций.

 

 

Определение угла наклона плоскости

К плоскостям проекций

 

Плоскость общего положения, расположенная в пространстве
произвольно, наклонена к плоскостям проекций. Для определения величины двухгранного угла наклона заданной плоскости к какой-либо
плоскости проекции используются линии наибольшего наклона плоскости к плоскости проекций: к П1 - линия ската, к П2 - линия наибольшего наклона плоскости к плоскости П2.

Линии наибольшего наклона плоскости - это прямые, образующие с плоскостью проекций наибольший угол, проводятся в плоскости перпендикулярно к соответствующей линии уровня. Линии наибольшего наклона и ее соответствующая проекция образуют линейный угол, которым измеряется величина двухгранного угла, составленное данной плоскостью и плоскостью проекций (рис. 5.10).

 

 



Поделиться:


Последнее изменение этой страницы: 2016-12-10; просмотров: 1488; Нарушение авторского права страницы; Мы поможем в написании вашей работы!

infopedia.su Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Обратная связь - 3.138.123.240 (0.007 с.)