Заглавная страница Избранные статьи Случайная статья Познавательные статьи Новые добавления Обратная связь FAQ Написать работу КАТЕГОРИИ: АрхеологияБиология Генетика География Информатика История Логика Маркетинг Математика Менеджмент Механика Педагогика Религия Социология Технологии Физика Философия Финансы Химия Экология ТОП 10 на сайте Приготовление дезинфицирующих растворов различной концентрацииТехника нижней прямой подачи мяча. Франко-прусская война (причины и последствия) Организация работы процедурного кабинета Смысловое и механическое запоминание, их место и роль в усвоении знаний Коммуникативные барьеры и пути их преодоления Обработка изделий медицинского назначения многократного применения Образцы текста публицистического стиля Четыре типа изменения баланса Задачи с ответами для Всероссийской олимпиады по праву Мы поможем в написании ваших работ! ЗНАЕТЕ ЛИ ВЫ?
Влияние общества на человека
Приготовление дезинфицирующих растворов различной концентрации Практические работы по географии для 6 класса Организация работы процедурного кабинета Изменения в неживой природе осенью Уборка процедурного кабинета Сольфеджио. Все правила по сольфеджио Балочные системы. Определение реакций опор и моментов защемления |
Сложение гармонических колебаний одного направления.Содержание книги
Похожие статьи вашей тематики
Поиск на нашем сайте
1. Сложение двух колебаний одного направления (сонаправленных колебаний) можно провести с помощью метода векторных диаграмм (Рисунок 9) вместо сложения двух уравнений. На Рисунке 2.1 показаны векторы амплитуд А 1(t) и А 2(t) складываемых колебаний в произвольный момент времени t, когда фазы этих колебаний соответственно равны и . Сложение колебаний сводится к определению . Воспользуемся тем фактом, что на векторной диаграмме сумма проекций складываемых векторов равна проекции векторной суммы этих векторов. Результирующему колебанию соответствует на векторной диаграмме вектор амплитуды и фаза . Рисунок 2.1 – Сложение сонаправленных колебаний. Величина вектора А (t) может быть найдена по теореме косинусов: . Фаза результирующего колебания задается формулой: . Если частоты складываемых колебаний ω1 и ω2 не равны, то и фаза φ(t), и амплитуда А (t) результирующего колебания будут изменяться с течением времени. Складываемые колебания называются некогерентными в этом случае. 2. Два гармонических колебания x1 и x2 называются когерентными, если разность их фаз не зависит от времени: . Но так как , то для выполнения условия когерентности двух этих колебаний должны быть равны их циклические частоты . Амплитуда результирующего колебания, полученного при сложении сонаправленных колебаний с равными частотами (когерентных колебаний) равна: . Начальную фазу результирующего колебания легко найти, если спроектировать векторы А 1 и А 2 на координатные оси ОХ и ОУ (см. Рисунок 9): . Итак, результирующее колебание, полученное при сложении двух гармонических сонаправленных колебаний с равными частотами, также является гармоническим колебанием . 3. Исследуем зависимость амплитуды результирующего колебания от разности начальных фаз складываемых колебаний. Если , где n – любое целое неотрицательное число (n = 0, 1, 2…), то , т.е. результирующая амплитуда будет минимальной. Складываемые колебания в момент сложения находились в противофазе. При результирующая амплитуда равна нулю . Если , то , т.е. результирующая амплитуда будет максимальной. В момент сложения складываемые колебания находились в одной фазе, т.е. были синфазны. Если амплитуды складываемых колебаний одинаковы , то . 4. Сложение сонаправленных колебаний с неравными, но близкими частотами. Частоты складываемых колебаний не равны , но разность частот много меньше и ω1, и ω2. Условие близости складываемых частот записывается соотношениями . Примером сложения сонаправленных колебаний с близкими частотами является движение горизонтального пружинного маятника, жесткость пружин которого немного различна k1 и k2. Пусть амплитуды складываемых колебаний одинаковы , а начальные фазы равны нулю . Тогда уравнения складываемых колебаний имеют вид: , . Результирующее колебание описывается уравнением: . Получившееся уравнение колебаний зависит от произведения двух гармонических функций: одна – с частотой , другая – с частотой , где ω близка к частотам складываемых колебаний (ω1 или ω2). Результирующее колебание можно рассматривать как гармоническое колебание с изменяющейся по гармоническому закону амплитудой. Такой колебательный процесс называется биениями. Строго говоря, результирующее колебание в общем случае не является гармоническим колебанием. Абсолютное значение косинуса взято потому, что амплитуда – величина положительная. Характер зависимости хрез.при биениях показан на Рисунке 2.2.
Рисунок 2.2 – Зависимость смещения от времени при биениях. Амплитуда биений медленно меняется с частотой . Абсолютное значение косинуса повторяется, если его аргумент изменяется на π, значит и значение результирующей амплитуды повторится через промежуток времени τб, называемый периодом биений (см. Рисунок 12). Величину периода биений можно определить из следующего соотношения: . Величина - период биений. Величина есть период результирующего колебания (Рисунок 2.4).
|
||||
Последнее изменение этой страницы: 2016-09-19; просмотров: 492; Нарушение авторского права страницы; Мы поможем в написании вашей работы! infopedia.su Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Обратная связь - 3.22.41.80 (0.007 с.) |