![]() Заглавная страница Избранные статьи Случайная статья Познавательные статьи Новые добавления Обратная связь FAQ Написать работу КАТЕГОРИИ: ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ТОП 10 на сайте Приготовление дезинфицирующих растворов различной концентрацииТехника нижней прямой подачи мяча. Франко-прусская война (причины и последствия) Организация работы процедурного кабинета Смысловое и механическое запоминание, их место и роль в усвоении знаний Коммуникативные барьеры и пути их преодоления Обработка изделий медицинского назначения многократного применения Образцы текста публицистического стиля Четыре типа изменения баланса Задачи с ответами для Всероссийской олимпиады по праву ![]() Мы поможем в написании ваших работ! ЗНАЕТЕ ЛИ ВЫ?
Влияние общества на человека
Приготовление дезинфицирующих растворов различной концентрации Практические работы по географии для 6 класса Организация работы процедурного кабинета Изменения в неживой природе осенью Уборка процедурного кабинета Сольфеджио. Все правила по сольфеджио Балочные системы. Определение реакций опор и моментов защемления |
Ламинарное и турбулентное течение жидкости. Число Рейнольдса.Содержание книги
Похожие статьи вашей тематики
Поиск на нашем сайте
Число Рейнолдса также определяет относительную роль инерции и вязкости: при больших числах Рейнольдса более важна роль инерции, при малых – вязкости.Силы вязкости, возникающие в потоке, обратно пропорциональны квадрату характерного поперечного размера потока и пропорциональны скорости. Давления р1 и р2 по разные стороны изогнутой трубки тока будут разные. Возникающий градиент давления связан с ускореним частиц жидкости уравнением: r(dv/dt)@–grad p Для частицы: F и–grad p+mD v =0 Þ силы вязкости значительно меньше сил инерции. В общем слкчае силы инерции обратно пропорциональны поперечному размеру потока и пропорциональны квадрату скорости. Re=rvh/m – число Рейнольдса, характеризующее отношение сил инерции к силам вязкости. Re>1 Þ жидкость можно рассмартивать как невязкую.
Течение вязкой жидкости. Уравнение Навье-Стокса. Для анализа течения вязкой жидкости в правую часть уравнения движения r(dv/dt)=F–drad p необходимо добавить силу вязкого трения, приложенную к единице объема жидкости. Для простоты ограничимся рассмотрением течения жидкости в направлении оси x, при это единственная компонента скорости vx будет зависеть от поперечной координаты y (рис. 4.3). На верхнюю грань dxdz кубика dxdydz (ось z перпендикулярна плоскости чертежа) в соответствии с F=(mSv/h) в направлении оси x действует увлекающая сила:
для соответствующих компонент скоростей, то мы получим систему уравнений гидродинамики вязкой жидкости. Эти три уравнения могут быть записаны в виде одного векторного уравнения Навье-Стокса: Течение вязкой жидкости по трубе. Формула Пуазейля. Если мы подсоединим тонкую горизонтальную стеклянную трубу с впаянными в нее вертикальными манометрическими трубками при помощи резинового шланга к водопроводному крану (рис. 4.6). При небольшой скорости течения хорошо видно понижение уровня воды в манометрических трубках в направлении течения (h 1 >h 2 >h 3). Это, в свою очередь, указывает на наличие градиента давления вдоль оси трубки — статическое давление в жидкости уменьшается по потоку. При равномерном прямолинейном течении жидкости силы давления уравновешиваются силами вязкости. Уравнение Навье-Стокса для этого случая запишется в виде: -grad p+mDv=0. (4.12) Распределение скоростей в поперечном сечении потока вязкой жидкости можно наблюдать при ее вытекании из вертикальной трубки через узкое отверстие (рис. 4.7). Если, например, при закрытом кране К налить вначале неподкрашенный глицерин, а затем сверху осторожно добавить подкрашенный, то в состоянии равновесия граница раздела Г будет горизонтальной. Если кран К открыть, то граница примет форму, похожую на параболоид вращения. Приравняем нулю сумму сил вязкости и давления, действующих на цилиндрический объем жидкости радиуса r и длиной dx (рис. 4.8): (p(x) – p(x+dx))pr2+m2prdx(dv/dr)=0 (4.13) Отметим, что равнодействующая сил давления направлена по потоку (вдоль оси x), а сила вязкого трения, приложенная к боковой поверхности выделенного цилиндра — против потока, поскольку dv/dr<0. Произведя сокращение и разделив (4.13) на dx, получаем: –(dp/dx)+2mdv/(rdr)=0 (4.14) Величина градиента давления dx/dp в (4.14) не зависит от радиуса r, т.к. давление p=p(x) и в поперечном сечении x=const не меняется. Это позволяет проинтегрировать (4.14):
Поток вектора скорости через поперечное сечение трубы, или объем жидкости, протекающей через сечение в единицу времени (на практике употребляют термин «расход жидкости») оказывается равным: Для практических целей расход жидкости определяют по формуле Пуазейля: Здесь расход воды Nv пропорционален разности давлений p1– p2 на концах трубы длиной l.
|
||||
Последнее изменение этой страницы: 2016-09-19; просмотров: 803; Нарушение авторского права страницы; Мы поможем в написании вашей работы! infopedia.su Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Обратная связь - 3.16.139.36 (0.011 с.) |