Заглавная страница Избранные статьи Случайная статья Познавательные статьи Новые добавления Обратная связь FAQ Написать работу КАТЕГОРИИ: АрхеологияБиология Генетика География Информатика История Логика Маркетинг Математика Менеджмент Механика Педагогика Религия Социология Технологии Физика Философия Финансы Химия Экология ТОП 10 на сайте Приготовление дезинфицирующих растворов различной концентрацииТехника нижней прямой подачи мяча. Франко-прусская война (причины и последствия) Организация работы процедурного кабинета Смысловое и механическое запоминание, их место и роль в усвоении знаний Коммуникативные барьеры и пути их преодоления Обработка изделий медицинского назначения многократного применения Образцы текста публицистического стиля Четыре типа изменения баланса Задачи с ответами для Всероссийской олимпиады по праву Мы поможем в написании ваших работ! ЗНАЕТЕ ЛИ ВЫ?
Влияние общества на человека
Приготовление дезинфицирующих растворов различной концентрации Практические работы по географии для 6 класса Организация работы процедурного кабинета Изменения в неживой природе осенью Уборка процедурного кабинета Сольфеджио. Все правила по сольфеджио Балочные системы. Определение реакций опор и моментов защемления |
Рассмотрим простейший способ: метод выбранных точек или узлов интерполяции степенным полиномом.↑ ⇐ ПредыдущаяСтр 17 из 17 Содержание книги
Похожие статьи вашей тематики
Поиск на нашем сайте
Необходимо определить коэффициенты полинома. Для этого выбирается (n+1) точек на заданной функции и составляется система уравнений:
Из этой системы находятся коэффициенты а0, а1, а2, …, аn. В выбранных точках аппроксимирующая функция будет совпадать с исходной, в других точках – отличаться (сильно или нет – зависит от степенного полинома). Можно использовать экспоненциальный полином:
Второй метод: метод аппроксимации по Тейлору. В этом случае выбирается одна точка, где будет совпадение исходной функции с аппроксимирующей, но дополнительно ставится условие, чтобы в этой точке совпадали еще и производные. Аппроксимация по Батерворту: выбирается простейший полином: В этом случае можно определить максимальное отклонение ε на краях диапазона.
Аппроксимация по Чебышеву: является степенной, там устанавливается совпадение в нескольких точках и минимизируется максимальное отклонение аппроксимирующей функции от исходной. В теории аппроксимации функций доказывается, что наибольшее по абсолютной величине отклонение полинома f (x)степени п от непрерывной функции ξ(х) будет минимально возможным, если в интервале приближения а ≤ х ≤ b разность f (x) - ξ(х) не меньше, чем п + 2 раза принимает свои последовательно чередующиеся предельные наибольшие f (x) - ξ(х) = L > 0 и наименьшие f (x) - ξ(х) = -L значения (критерий Чебышева). Во многих прикладных задачах находит применение полиномиальная аппроксимация по среднеквадратическому критерию близости, когда параметры аппроксимирующей функции f (x) выбираются из условия обращения в минимум в интервале аппроксимации а ≤ х ≤ b квадрата отклонения функции f (x) от заданной непрерывной функции ξ(х), т. е., из условия: b Λ= 1/b-a∫a [ f (x) - ξ(x)]2 dx = min. (7) В соответствии с правилами отыскания экстремумов решение задачи сводится к решению системы линейных уравнении, которая образуется в результате приравнивания к нулю первых частных производных функции Λ по каждому из искомых коэффициентов ak аппроксимирующего полинома f (x), т. е. уравнений дΛ ∕дa0 =0; дΛ ∕дa1 =0; дΛ ∕дa2 =0,..., дΛ ∕дan =0. (8) Доказано, что и эта система уравнений имеет единственное решение. В простейших случаях оно находится аналитически, а в общем случае — численно. Чебышев установил, что должно для максимальных отклонений выполняться равенство:
В инженерной практике используется еще так называемая кусочно-линейная аппроксимация – это описание заданной кривой отрезками прямых линий.
В пределах каждого из линиаризированных участков вольт - амперной характеристики применимы все методы анализа колебаний в линейных электрических цепях. Ясно, что, чем на большее число линеаризированных участков разбивается заданная вольт-амперная характеристика, тем точнее она может быть аппроксимирована и тем больше объем вычислений в ходе анализа колебаний в цепи. Во многих прикладных задачах анализа колебаний в нелинейных резистивных цепях аппроксимируемая вольт - амперная характеристика в интервале аппроксимации с достаточной точностью представляется двумя или тремя отрезками прямых. Подобная аппроксимация вольт - амперных характеристик дает в большинстве случаев вполне удовлетворительные по точности результаты анализа колебаний в нелинейной резистивной цепи при «небольших» по величине воздействиях на нелинейный элемент, т. е. когда мгновенные значения токов в нелинейном элементе изменяются в предельно допустимых границах от I = 0 до I = Iмах Определение реакции нелинейного элемента на гармоническое Воздействие 1. Гармоническое воздействие малой амплитуд c постоянной составляющей , где - постоянная составляющая, - амплитуда малой величины. В этом случае можно отдельно рассмотреть реакцию на постоянную составляющую и на гармоническое воздействие. Здесь можно использовать понятие статического и дифференциальных сопротивлений в рабочей точке ВАХ (U0), а также графический метод на линейном участке. , где ,
Большая амплитуда напряжения Используется графический метод (строится реакция путем переноса точек на нелинейном участке).
|
||||||||||
Последнее изменение этой страницы: 2016-08-16; просмотров: 739; Нарушение авторского права страницы; Мы поможем в написании вашей работы! infopedia.su Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Обратная связь - 18.191.171.136 (0.008 с.) |