Мы поможем в написании ваших работ!



ЗНАЕТЕ ЛИ ВЫ?

Определение напряжений на источниках тока.

Поиск

Общая стандартная форма записи системы уравнений по МКТ для резистивных цепей с источниками постоянного действия

Записывают уравнения и в матричном виде. Например,

.

Здесь: Inn (InK) – соответствующие контурные токи,

R11 –собственное контурное сопротивление первого контура, равное сумме сопротивлений элементов входящих в 1 контур, R22 –контурное сопротивление второго и т.д.;

R12 – взаимное сопротивление между первым и вторым контурами (учитывается с +, если контурные токи совпадают и с “- ”, если не совпадают) и аналогично;

E11 – контурная ЭДС 1 контура, которая содержит алгебраическую сумму ЭДС входящих в 1-ый контур (c + если совпадает с контурным током) и включает влияние источников тока на контур (после переноса из левой части). Далее аналогично.

Причем обычно R12 = R21 а если есть управляемые источники, то R12 и R21 могут быть не равны.

6. Применение МКТ

Целесообразно применять для сложных схем с несколькими однотипными источниками, у которых частота одна и та же. Если есть L - и C -элементы и частоты источников одинаковые, то применяется в комплексной форме. Если частоты действия разные, то можно применять совместно с методом наложения для расчета частичных токов.

1.8. Метод узловых напряжений (МУН)

В качестве основных неизвестных используются так называемые узловые напряжения – это напряжения между узлом схемы или цепи и некоторым опорным или базисным узлом, который выбирается один для всей цепи или схемы. В качестве дополнительных неизвестных используются токи в некоторых «вырожденных» ветвях, которые содержат только идеальные источники напряжения (или ЭДС) без других элементов. Система уравнений по МУН составляется на основе первого закона Кирхгофа. Второй закон и закон Ома используются как вспомогательные.

2. Определение количества уравнений и выбор базисного узла

Количество уравнений определяется по формуле:

, где NE – число «вырожденных» ветвей которые содержат только идеальные источники напряжения (или ЭДС) без других элементов.

Базисный узел выбирается из узлов, прилегающих к ветви «вырожденной» (где есть одиночный идеальный источник напряжения) и отмечается знаком заземления или корпуса.

I1 E1

Из этих двух узлов обычно берут тот узел, где больше подходит ветвей.

Берут там, где удобнее при взгляде на схему.

Начинается метод с определения числа «вырожденных» ветвей и базисного узла, потом составляется и решается система уравнений.

Пример расчета цепи с помощью метода узловых напряжений по схеме

1. При расчёте цепи по методу узловых напряжений определяем число узлов схемы. Один из этих узлов принимаем за базисный. Остальные узлы называются независимыми. Базисный узел – это узел от которого ведется отсчет. Его выбирают в первую очередь там, где есть ветвь, содержащая только одиночный идеальный источник ЭДС, и сходится много ветвей или это тот узел, который удобнее для наглядности (в нашей схеме это узел 3). Базисный узел часто заземляют, при этом его потенциал (напряжение) равен нулю V3=0. Из свойств идеального источника напряжения, следует отметить, что если в схеме имеются ветви, состоящие из одиночных идеальных источников напряжения, то их сопротивление равно нулю, а проводимость – бесконечности. В нашем случае таких ветвей нет NE=0. Для ветвей с источниками тока все наоборот.

2. Определяем число независимых уравнений, составляемых методом узловых напряжений NМУН=NУЗ-1-NЕ=2.

Составляем систему алгебраических уравнений методом узловых напряжений, согласно первому закону Кирхгофа.

I1+J4-I2=0

I2-I3-I4=0

4. V1,V2 – узловые напряжения узлов 1 и 2 соответственно. Выражаем токи ветвей через узловые напряжения на основе 2 закона Кирхгофа для вспомогательных контуров, которые обязательно проходят через базисный узел, и закона Ома:

I1∙R1+V1 =E1, I2∙R2+V2-V1= -E2, I3∙(R3+R)-V2 =E3 (V=U).

После подстановки формул токов данная система уравнений переводится в систему узловых уравнений, записанную в канонической форме. Число уравнений должно быть равно числу неизвестных узловых напряжений.

Для 1 уравнения получим

. Затем можно поменять знаки и получить уравнение . Аналогично для 2 уравнения получим

. Эти уравнения приводят к стандартному каноническому виду:

где – это собственные проводимости соответственно узлов 1 и 2.

.

.

– взаимные проводимости между узлами 1 и 2.

IУ1, IУ2 – собственные или задающие узловые токи, соответственно, независимых узлов 1 и 2. В общем виде их можно представить в следующем виде:

,

,

где – алгебраическая сумма произведений ЭДС ветвей, примыкающих к узлу 1, на их проводимости, – алгебраическая сумма произведений ЭДС ветвей, примыкающих к узлу 2, на их проводимости; при этом со знаком "+" берутся те ЭДС, которые действуют в направлении узла, и со знаком "–" – в направлении от узла; – алгебраическая сумма токов источников тока, присоединенных к узлу 1, – алгебраическая сумма токов источников тока, присоединенных к узлу 2; при этом со знаком "+" берутся те токи, которые направлены к узлу, а со знаком "–" в направлении от узла. Для нашего случая токи IУ1, IУ2 имеют следующий вид:

.

.

Узловое напряжение – это напряжение между независимым и базисным узлами и направлено оно к базисному узлу. V1,V2 – узловые напряжения узлов 1 и 2 соответственно. Знак "+" перед узловым напряжением берётся, если это собственное узловое напряжение, в противном случае берётся знак "–".

Данную систему решаем методом Крамера. Составляем определитель второго порядка, в первую и вторую строки которого ставим значения проводимостей стоящих при напряжениях, соответственно в первом и во втором уравнениях нашей системы.

Затем составляем определитель , для этого в определителе в первом столбе значения проводимостей заменяем значениями токов, стоящих в правой части нашей системе.

После чего вычисляем напряжение по следующей формуле:

Аналогично находим напряжение

6. Находим токи ветвей через узловые напряжения:

 

Общая форма записи системы уравнений по МУН с узловыми напряжениями (потенциалами) VK, собственными проводимостями узлов GKK, взаимными проводимостями между узлами GKM и узловыми токами.



Поделиться:


Последнее изменение этой страницы: 2016-08-16; просмотров: 2718; Нарушение авторского права страницы; Мы поможем в написании вашей работы!

infopedia.su Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Обратная связь - 3.15.26.231 (0.008 с.)