Мы поможем в написании ваших работ!



ЗНАЕТЕ ЛИ ВЫ?

Середньої швидкості та за середньою швидкістю вихідної ланки

Поиск

 

Кривошипно - коромисловий механізм. Задано довжину коромисла , два його крайніх положення за допомогою кутів , а також коефіцієнт зміни середньої швидкості вихідної ланки 3. Потрібно знайти: довжини кривошипа , шатуна та стояка (рис.7.4, а).

Коефіцієнт зміни середньої швидкості - це відношення середніх кутових швидкостей вихідної ланки при марноході та робочому ході механізму

. (7.7)

Зазвичай величина коефіцієнта більша за одиницю, > 1. Це пов’язано з тим, що при робочому ході механізму швидкість вихідної ланки обмежується технологічним процесом. При марноході такого обмеження немає, крім того, сили опору є значно меншими, і тому для підвищення продуктивності машини швидкість вихідної ланки вибирається більшою. Відповідно до цього, рух коромисла з положення 1 у положення 2 приймаємо за робочий хід – кривошип повернеться на кут , а рух у протилежному напрямі – за марнохід – кривошип повернеться на кут . Зазначимо, що більший з центральних кутів повороту кривошипа , що відповідає крайнім положенням вихідної ланки, називають кутом робочого ходу. Як слідує з рис. 7.4, а, за час робочого ходу та марноходу кривошип повернеться, відповідно, на кути , де - кут перекриття, кут між положеннями шатуна, що відповідають крайнім положенням коромисла.

Отже,

. (7.8)

З виразу (7.8) знаходимо кут

.

Після цього задача зводиться до знаходження центра обертання А кривошипа. Побудуємо кут ходу коромисла з вершиною у довільно вибраній точці D, а на його сторонах відкладемо довжину коромисла l . Отримуємо точки С1, С2. Проводимо бісектрису ЕD кута . На продовженні прямої ЕD зі сторони т. С2 відкладаємо кут перекриття . Через т. С2, до перетину з продовженням ЕD, проводимо пряму, що паралельна стороні побудованого кута перекриття. З отриманої точки перетину F, як із центра, проводимо коло, що проходить через точки С1, С2. Коло радіусом r = C2F буде геометричним місцем шуканих центрів обертання кривошипа, оскільки при виборі центра у будь-якій точці цього кола, кут перекриття дорівнюватиме заданому (кут, вписаний у коло, дорівнює половині відповідного центрального кута, С1АС2= С1FC2= ). Щоб задача мала один розв’язок, задамося додатковою умовою – центр обертання кривошипа знаходиться на осі абсцис (інколи додатковою умовою може бути обмеження ). Відмітимо, що для більшої точності радіус r=C2F допоміжного кола можна порахувати за формулою .

Рис. 7.4

Після цього довжини кривошипа та шатуна вираховуємо за формулами (7.5). Зазначимо, якщо в спроектованому механізмі максимальний кут тиску виявиться більшим за допустимий, слід вибрати інше положення центра обертання кривошипа (на колі радіуса r, вище за точку А).

Кривошипно-повзунний механізм. У центральному кривошипно-повзунному механізмі швидкість повзуна в прямому та оберненому рухах однакова, коефіцієнт зміни середньої швидкості .

При синтезі таких механізмів часто виникає задача проектування за відомою середньою швидкістю вихідної ланки. Для центрального механізму хід повзуна дорівнює подвоєній довжині кривошипа. Тому можна записати

, (7.9)

де , об/хв – частота обертання кривошипа.

З (7.9) одержуємо довжину кривошипа

.

Довжину шатуна визначаємо за вибраним коефіцієнтом .

Синтез кривошипно-повзунного механізму зі зміщенням за заданим коефіцієнтом зміни середньої швидкості та ходом вихідної ланки. Коефіцієнт зміни середньої швидкості вихідної ланки для даного механізму

. (7.10)

Розв’язавши рівняння (7.10) відносно кута , одержимо

.

Після цього задача зводиться до знаходження центра обертання А кривошипа, яка є аналогічною до розглянутої задачі для кривошипно-коромислового механізму. Проводимо через середину хода h повзуна пряму, перпендикулярну до С2С1 (рис. 7.4, б). Далі, через точку С1 проводимо пряму, що складає кут з побудованим перпендикуляром. Коло радіуса r = C1F, буде геометричним місцем шуканих центрів обертання кривошипа. Якщо задана величина зміщення е, то центр А знаходиться як точка перетину побудованої дуги кола r = C1F та осі абсцис, що знаходиться на відстані е від ходу h.

Кулісний механізм. Розглянемо проектування цих механізмів на прикладі шестиланкового механізму з коливною кулісою (рис. 7.5). Для таких механізмів, як правило, відомо хід h вихідної ланки та коефіцієнт зміни її середньої швидкості .

Виявляється, що для механізмів даного виду коефіцієнт залежить лише від кутового ходу куліси .

.

Як і у попередніх задачах, де зустрічається коефіцієнт зміни середньої швидкості вихідної ланки, знаходимо кут

.

Для визначення довжини куліси розглянемо її крайнє ліве положення

,

а з прямокутного АВС визначаємо співвідношення між розмірами ланок

(7.11)

Рис. 7.5

З іншого боку, при вертикальному положенні куліси можна записати таке співвідношення, що зв’язує розміри

, (7.12)

де а – розмір, що вибирають з конструктивних міркувань.

З виразу (7.12), після підстановки (7.11), знаходимо

.

Щодо кутів тиску, то при ведучому кривошипі кут =0, тобто за весь період руху напрям зусилля, що передається від кулісного каменя (повзун 2) до куліси 3, співпадає зі швидкістю точки прикладання зусилля. Даний факт є важливою позитивною властивістю цих механізмів.

З метою забезпечення найменшого кута тиску при передачі зусилля від шатуна 4 до веденого повзуна 5 його напрямну хх необхідно розмістити таким чином, щоб вона ділила стрілку сегмента f навпіл, тоді

,

де .

Довжина шатуна 4 виражається через заданий допустимий кут тиску з NDE

.

Для інших кулісних механізмів синтез виконується подібним способом.

 




Поделиться:


Последнее изменение этой страницы: 2016-06-22; просмотров: 225; Нарушение авторского права страницы; Мы поможем в написании вашей работы!

infopedia.su Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Обратная связь - 3.141.47.139 (0.007 с.)