Заглавная страница Избранные статьи Случайная статья Познавательные статьи Новые добавления Обратная связь FAQ Написать работу КАТЕГОРИИ: АрхеологияБиология Генетика География Информатика История Логика Маркетинг Математика Менеджмент Механика Педагогика Религия Социология Технологии Физика Философия Финансы Химия Экология ТОП 10 на сайте Приготовление дезинфицирующих растворов различной концентрацииТехника нижней прямой подачи мяча. Франко-прусская война (причины и последствия) Организация работы процедурного кабинета Смысловое и механическое запоминание, их место и роль в усвоении знаний Коммуникативные барьеры и пути их преодоления Обработка изделий медицинского назначения многократного применения Образцы текста публицистического стиля Четыре типа изменения баланса Задачи с ответами для Всероссийской олимпиады по праву Мы поможем в написании ваших работ! ЗНАЕТЕ ЛИ ВЫ?
Влияние общества на человека
Приготовление дезинфицирующих растворов различной концентрации Практические работы по географии для 6 класса Организация работы процедурного кабинета Изменения в неживой природе осенью Уборка процедурного кабинета Сольфеджио. Все правила по сольфеджио Балочные системы. Определение реакций опор и моментов защемления |
Тест Дарбина – Уотсона некоррелированности случайных возмущений в схеме Гаусса – МарковаСодержание книги
Похожие статьи вашей тематики
Поиск на нашем сайте
Этот тест предназначен для проверки предпосылки о том, что теоремы Гаусса – Маркова, точнее, важнейшего частного случая этой предпосылки, а именно статистической гипотезы при j=i-1 Неадекватность гипотезы влечет, очевидно, и неадекватность предпосылки. Часто истинной причиной отклонения гипотезы оказывается ошибка в выборе функции регрессии в спецификации модели, например пропуск значимой предопределенной переменной. Эмпирическая корреляция случайных остатков, порожденная этой причиной, называется ложной. Тест Дарбина – Уотсона позволяет идентифицировать, в частности, ложную корреляцию и поэтому рассматривается в эконометрике как один из наиболее важных тестов. Шаги теста: 1. Модель оценивается по уравнениям методом наименьших квадратов, рассчитываются по формуле оценки остатков. 2. Для проверки случайной последовательности на корреляцию используется критерий Дарбина-Уотсона Раскроем скобки и проведем преобразование исходной формулы: Т.к. r – выборочный коэффициент корреляции Из полученной формулы следует, что если r =0 (корреляция отсутствует), то DW=2; если корреляция положительна, то DW < 2; если отрицательна - DW > 2. Так как коэффициент корреляции Поскольку критическое значение dкр невозможно табулировать по ряду причин, граница раздвигается и значения левой границы dL и правой границы dU выбираются из таблицы в зависимости от числа наблюдений n, числа независимых переменных k и уровня значимости α. Следовательно, по таблицам Дарбина-Уодсона выбирают 2 константы и , по аргументам 1) 2) 3) 3. Определяется интервал, в который попадает величина DW
Отметим, что тест Дарбина – Уотсона базируется на предположении, что: 1. Функция регрессии модели является неоднородной (параметр подлежит определению) 2. Случайные остатки в уравнениях наблюдений распределены по нормальному закону 3. Предпосылки теоремы Гаусса – Маркова справедливы. Метод имитационного моделирования. Исследование последствий нарушения условий теоремы Гаусса – Маркова Известным методом оценки риска является метод имитационного моделирования (метод Монте-Карло). Имитационное моделирование, как правило, включает следующие этапы: 1. определение вероятностных распределений каждой переменной; 2. компьютер выбирает случайное значение для каждой неопределенной переменной, основанное на вероятностном распределении этой переменной; 3. отобранное значение вместе с фиксированными факторами (ставкой налогов, амортизационных отчислений и т. д.) используется в модели для определения результативных показателей; 4. этапы 2 и 3 повторяются многократно, например 500 раз. В результате получают распределение 500 значений результативного показателя. Обычно это позволяет выделить наиболее вероятное значение. В каждом эксперименте должна обеспечиваться адекватность условий теоремы Гаусса-Маркова. Величины a0(j), a1(j), (j) – несмещённые оценки параметров а0, а1, должны быть рассеяна вокруг этих параметров. Разброс оценок относительно параметров должен согласовываться со значениями их средних квадратических ошибок Sa0 и S a1 Преимуществом метода моделирования является тот факт, что он позволяет увидеть широкий диапазон вероятных результатов, а не несколько дискретных оценок. Тем не менее, метод Монте-Карло мало распространен на практике из-за трудоемкости и сложности выявления всех взаимосвязей и корреляции переменных.
u – случайная переменная (случайный остаток), которая характеризуется своим законом распределения Pu(q). Pu(q) Для организации процесса конкретных значений случайной переменной, обладающей законом распределения, существуют таблицы конкретных значений стандартных нормально распределённых случайных переменных. Эти переменные u1*, u2*..un* каждая переменная распределена по нормальному закону распределения. Все переменные являются независимыми в данном наборе. И каждая из них имеет нулевое значение и единичную дисперсию: Сом (ui*, uj*)=0 при i неравном j E(ui*)=E(u2*)= …E(un*)=m=0 Var(ui*)= Var(u2*)=… Var(un*)= =1
|
||||
Последнее изменение этой страницы: 2016-04-26; просмотров: 730; Нарушение авторского права страницы; Мы поможем в написании вашей работы! infopedia.su Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Обратная связь - 18.191.14.104 (0.009 с.) |