Заглавная страница Избранные статьи Случайная статья Познавательные статьи Новые добавления Обратная связь FAQ Написать работу КАТЕГОРИИ: АрхеологияБиология Генетика География Информатика История Логика Маркетинг Математика Менеджмент Механика Педагогика Религия Социология Технологии Физика Философия Финансы Химия Экология ТОП 10 на сайте Приготовление дезинфицирующих растворов различной концентрацииТехника нижней прямой подачи мяча. Франко-прусская война (причины и последствия) Организация работы процедурного кабинета Смысловое и механическое запоминание, их место и роль в усвоении знаний Коммуникативные барьеры и пути их преодоления Обработка изделий медицинского назначения многократного применения Образцы текста публицистического стиля Четыре типа изменения баланса Задачи с ответами для Всероссийской олимпиады по праву Мы поможем в написании ваших работ! ЗНАЕТЕ ЛИ ВЫ?
Влияние общества на человека
Приготовление дезинфицирующих растворов различной концентрации Практические работы по географии для 6 класса Организация работы процедурного кабинета Изменения в неживой природе осенью Уборка процедурного кабинета Сольфеджио. Все правила по сольфеджио Балочные системы. Определение реакций опор и моментов защемления |
Автокорреляция случайной составляющей. Тесты на наличие автокорреляции↑ ⇐ ПредыдущаяСтр 5 из 5 Содержание книги
Поиск на нашем сайте
В классической регрессионной модели выполнение третьего условия Гаусса-Маркова (Соv(εt εS) = 0,при t ≠ s) гарантирует некоррелированность значений случайных членов в различные моменты наблюдений и это позволяет получить несмещенные МНК-оценки с минимальной дисперсией. Зависимость значений случайных членов в различные моменты времени называется автокорреляцией (сериальной корреляцией). Формальной причиной автокорреляции в регрессионных моделях является нарушение третьего условия теоремы Гаусса-Маркова, действительной же причиной может быть: неправильная спецификация переменных (пропуск важной объясняющей переменной); использование ошибочной функциональной зависимости, а иногда и характер наблюдений (например, временные ряды). Для проверки на автокорреляцию используется ряд критериев, из которых наиболее широкое применение получил критерий Дарбина-Уотсона(тест): Критерий DW связан с выборочным коэффициентом корреляции между еt и еt-1, соотношением: DW≈2(1-r), Если автокорреляция отсутствует, то DW ≈ 2, при наличии положительной автокорреляции DW<2, если автокорреляция отрицательна, DW>2. И поскольку коэффициент корреляции принимает значения -1 ≤ r ≤ 1, то 0≤ DW ≤ 4. Полученное для данной регрессии значение статистики сравнивается с верхней и нижней границами ее критического значения dL ≤ dкрит ≤dU. Границы dU и dL выбираются из таблиц по числу наблюдений n, числу регрессоров k и уровню значимости α. При этом возможны следующие случаи: 1. Наличие положительной автокорреляции: DW<dL. 2. Наличие отрицательной автокорреляции: DW >4-dL. 3. Автокорреляция отсутствует: dU ≤ DW≤ 4-dU. Зоны неопределенности: dL<DW< dU или 4- dU <DW<4-dL. Графически можно определить: 22. Спецификация и преобразование к приведенной форме динамических моделей. Лаговые и предопределенные переменные динамической модели Из теории известно, что все переменные объекта изменяются со временем. Этот факт должен быть отражен в моделях. Для этого каждой переменной, которая изменяется со временем добавляется индекс “t”. Например, Ydt означает, что переменная уровень спроса относится к текущему моменту времени. С учетом сказанного модель конкурентного рынка должна иметь вид:
Определение. Экономические модели, значения переменных которых привязаны к моменту времени, называются динамическими. Определение. Переменные, связанные с моментом времени, называются датированными. Необходимость соотнесения переменных модели к моменту времени является одним из принципов спецификации модели. Дополнительно необходимо учесть, что - экономические объекты обладают инертностью, т.е. не все переменные объекта «успевают» за временем - не каждая переменная модели может быть известна в текущий момент времени. Например, производитель не может мгновенно реорганизовать производство, чтобы увеличить или уменьшить выпуск продукции в соответствии с изменившимся спросом, и он не знает, какой будет равновесная цена. Для учета этого факта в моделях применяются переменные, отнесенные к прошлому периоду времени, значения которых в текущий момент уже известны. Тогда приведенную выше модель следует записать в виде:
Где pt-1 - значение цены на продукцию в предыдущий период времени. Данная модель получила название «паутинная модель конкурентного рынка». Вторая часть вопроса. Определение. Переменные модели, отнесенные к предыдущим моментам времени, называются «лаговыми». Определение. Все лаговые переменные (эндогенные и экзогенные) и текущие экзогенные переменные составляют группу «предопределенных» переменных. Уточнение. В приведенной форме модели каждая текущая эндогенная переменная должна быть выражена через предопределенные переменные. В модели (2.2) второе уравнение получило приведенную форму на этапе спецификации. Для полного преобразование модели (2.2) к приведенной форме достаточно найти выражения для pt и Ydt:
Зная значения параметров модели и значение цены на товар в предшествующем периоде, можно дать прогноз равновесной цены и уровней спроса и предложения в текущем периоде времени Пример. Записать модель конкурентного рынка в приведенной форме
1. Выписываем необходимые вектора и матрицы для данной модели
2. Вычисляем матрицу М Для этого находится обратная матрица А-1
Тогда матрица М есть:
3. Приведенная форма модели принимает вид:
Зная значения параметров модели и значение цены на товар в предшествующем периоде, можно дать прогноз равновесной цены и уровней спроса и предложения в текущем периоде времени
|
||||||||||||||||||||||
Последнее изменение этой страницы: 2016-04-26; просмотров: 338; Нарушение авторского права страницы; Мы поможем в написании вашей работы! infopedia.su Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Обратная связь - 3.145.100.144 (0.009 с.) |