![]() Заглавная страница Избранные статьи Случайная статья Познавательные статьи Новые добавления Обратная связь FAQ Написать работу КАТЕГОРИИ: ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ТОП 10 на сайте Приготовление дезинфицирующих растворов различной концентрацииТехника нижней прямой подачи мяча. Франко-прусская война (причины и последствия) Организация работы процедурного кабинета Смысловое и механическое запоминание, их место и роль в усвоении знаний Коммуникативные барьеры и пути их преодоления Обработка изделий медицинского назначения многократного применения Образцы текста публицистического стиля Четыре типа изменения баланса Задачи с ответами для Всероссийской олимпиады по праву ![]() Мы поможем в написании ваших работ! ЗНАЕТЕ ЛИ ВЫ?
Влияние общества на человека
Приготовление дезинфицирующих растворов различной концентрации Практические работы по географии для 6 класса Организация работы процедурного кабинета Изменения в неживой природе осенью Уборка процедурного кабинета Сольфеджио. Все правила по сольфеджио Балочные системы. Определение реакций опор и моментов защемления |
Ультрафіолетове випромінюванняСодержание книги
Похожие статьи вашей тематики
Поиск на нашем сайте
При опромінюванні видимими променями багато речовин випромінюють холодне світло. А яким буде холодне свічення речовин, якщо їх опромінювати кольоровими променями спектра? Щоб дістати відповідь на це запитання, німецький фізик Йоганн Ріттер (1776—1810) поміщав шматочок картону, вкритого сульфідом цинку, в різні ділянки сонячного спектра. З'ясувалося, що холодне свічення сульфіду цинку зростає в міру наближення до фіолетової ділянки спектра. Помістивши люмінесцентний екран над фіолетовими променями, Й. Ріттер, на своє здивування, виявив, що холодне свічення екрана не зникло, а навпаки, стало ще інтенсивнішим. Сумнівів не було: над фіолетовими променями спектра теж знаходяться невидимі промені, які дістали назву ультрафіолетових (від лат. иltrа — над, зверху). Ультрафіолетові промені являють собою електромагнітні хвилі довжиною 380— 10 нм. Зорового відчуття такі хвилі не спричинюють, але вони мають специфічні властивості, важливі для біології й медицини. Ультрафіолетові промені спричинюють йонізацію молекул повітря, інтенсивне холодне свічення багатьох речовин. Розчин хлористого срібла і всі сорти фотоемульсії під дією ультрафіолетових променів чорніють: у них відбуваються фотохімічні реакції. Фотохімічними процесами зумовлюється й специфічна дія ультрафіолетових променів на живі тканини. Ультрафіолетове випромінювання не проходить крізь звичайне скло, а також сильно поглинається озоном і водяною парою. Проте кварц, кухонна сіль, плавиковий шпат, флюорит (мінерал без металічного блиску) вільно пропускають ультрафіолетове випромінювання з довжиною хвилі, що не перевищує 200 нм. І тому щоб звичайне скло пропускало ультрафіолетові промені, в нього добавляють кварц; таке скло називають кварцовим, або увіолевим. Ультрафіолетове випромінювання з довжиною хвилі менше ніж 200 нм сильно поглинається всіма тілами, й навіть тонкий шар повітря їх поглинає майже повністю, тому практичного значення для медицини воно не має. Залежно від біологічної дії ультрафіолетові промені поділяють на три зони: 1) зона А — антирахітна — з довжиною хвилі 380—320 нм; 2) зона В — еритемна — з довжиною хвилі 320—280 нм; 3) зона С — бактерицидна — з довжиною хвилі 280—200 нм.
Промені зони А справляють на організм гартувальну дію, під їх впливом вітамін А перетворюється на вітамін О. Брак цього вітаміну в організмі призводить до порушення фосфорно-кальцієвого обміну: фосфор і кальцій вимиваються з кісткової речовини. У похилому віці кістки стають крихкими й легко ламаються навіть за незначних навантажень, а в дитячому — виникає рахіт. З цієї причини ультрафіолетове випромінювання цієї зони називають антирахітним. Промені зони В зумовлюють складну фотохімічну реакцію в організмі, яка називається еритемою. При опроміненні променями цієї зони через 6—12 год спостерігається почервоніння шкіри, яке утримується протягом кількох днів і потім зникає. Але не безслідно: шкіра набуває світло-коричневої пігментації, яку називають загаром. При надлишковому опромінюванні промені цієї зони можуть призвести до опіку й зумовити виникнення онкологічних захворювань. Промені зони С згубно діють на живі клітини, насамперед на клітини багатьох видів бактерій, що мають здатність до швидкого розмноження, й тому ця зона називається бактерицидною (та, що вбиває бактерії). Промені цієї зони, потрапляючи на зовнішню оболонку очного яблука, спричинюють її запалення, що супроводжується різким болем і призводить до виникнення кон'юктивітів. Тому не слід без захисних окулярів дивитися на джерело ультрафіолетових променів. Природними джерелами ультрафіолетового випромінювання є Сонце, зорі, туманності та інші космічні об'єкти. Ультрафіолетові промені інтенсивно випромінює будь-яке тіло, температура якого перевищує 2500 °С. Потужними джерелами ультрафіолетових променів є дуговий розряд і високотемпературна плазма. В техніці й медицині ультрафіолетові промені одержують за допомогою ртутних ламп. Ртутна лампа складається з короткої прямої трубки / (рис.3.21, а), виготовленої із кварцового скла. З трубки відкачують повітря й заповнюють її аргоном. Усередину трубки вводять кілька крапель ртуті 2 і впаюють два металеві електроди 3, що мають вигляд спіралей. Зовнішній вигляд ртутної лампи показано на рис.3.21, б. Лампа вмикається в мережу змінного струму, і в аргоні, що заповнює балон трубки, виникає тліючий розряд. Газ у трубці нагрівається, й крапельки ртуті випаровуються. Тліючий розряд переходить у дуговий, який стає потужним джерелом ультрафіолетового випромінювання.
а
б Рисунок 3.21 Крім ультрафіолетевих, лампа випромінює також сині й фіолетові промені, які спостерігаються органами зору під час роботи лампи. Лампу вміщують у рефлектор, який може мати різну форму залежно від призначення лампи. Лампа випромінює ультрафіолетові промені тієї чи іншої зони залежно від тиску аргону, який міститься в її балоні. У зв'язку з цим виготовляють ртутні лампи трьох типів: 1) лампи низького тиску (0,5 кПа) бактерицидні, які випромінюють промені зони С; 2) лампи високого тиску, які випромінюють промені зони В; 3) лампи надвисокого тиску (вищого від атмосферного), які випромінюють промені зони А. Лампи високого й надвисокого тиску застосовують для лікування хворих і як засіб загартовування організму. Бактерицидні лампи використовують для дезінфекції повітря в операційних, перев'язочних та інфекційних відділеннях лікарень. Під час епідемій грипу бактерицидними лампами опромінюють повітря в місцях скупчення людей — у навчальних закладах, театрах, кінозалах, супермаркетах
|
||||||
Последнее изменение этой страницы: 2016-04-26; просмотров: 976; Нарушение авторского права страницы; Мы поможем в написании вашей работы! infopedia.su Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Обратная связь - 52.15.164.56 (0.01 с.) |