Заглавная страница Избранные статьи Случайная статья Познавательные статьи Новые добавления Обратная связь FAQ Написать работу КАТЕГОРИИ: АрхеологияБиология Генетика География Информатика История Логика Маркетинг Математика Менеджмент Механика Педагогика Религия Социология Технологии Физика Философия Финансы Химия Экология ТОП 10 на сайте Приготовление дезинфицирующих растворов различной концентрацииТехника нижней прямой подачи мяча. Франко-прусская война (причины и последствия) Организация работы процедурного кабинета Смысловое и механическое запоминание, их место и роль в усвоении знаний Коммуникативные барьеры и пути их преодоления Обработка изделий медицинского назначения многократного применения Образцы текста публицистического стиля Четыре типа изменения баланса Задачи с ответами для Всероссийской олимпиады по праву Мы поможем в написании ваших работ! ЗНАЕТЕ ЛИ ВЫ?
Влияние общества на человека
Приготовление дезинфицирующих растворов различной концентрации Практические работы по географии для 6 класса Организация работы процедурного кабинета Изменения в неживой природе осенью Уборка процедурного кабинета Сольфеджио. Все правила по сольфеджио Балочные системы. Определение реакций опор и моментов защемления |
Применение фиктивных переменных для моделирования закономерных колебаний во временном ряду.Содержание книги
Похожие статьи вашей тематики
Поиск на нашем сайте
Иногда строится модель регрессии с включением (явно) фактора времени и фиктивных переменных. При этом количество фиктивных переменных должно быть на единицу меньше числа моментов (периодов) времени внутри одного цикла колебаний. Каждая фиктивная переменная отражает сезонную (циклическую) компоненту ряда для какого-либо одного периода, поэтому она просто численно равна единице для данного периода и нулю для всех остальных периодов. Основным недостатком модели с фиктивными переменными является большое количество фиктивных переменных во многих случаях и тем самым снижение числа степеней свободы. В свою очередь, уменьшение числа степеней свободы снижает вероятность получения статистически значимых оценок параметров уравнения регрессии.
Изучение корреляции между временными рядами по цепным абсолютным изменениям уровня ряда (первым разностям) Временной ряд -совокупность значений какого-либо показателя за несколько последовательных моментов времени. Наличие в этих рядах тенденции может привести к искажению выводов о тесноте связи между этими показателями. Неверные выводы относ связи между двумя рядами назыв ложной корреляцией. Она обусл наличием в рядах тенденции, поэтому чтобы дать точную характеристику связи между рядами необходимо каким-то образом исключить влияние тенденции на показатель тесно ты связи. Методы исключения тенденции: 1. Метод корреляции первых разностей или абсолютных приростов первого порядка. 2. Метод корреляции случайных отклонений от тренда. 3. Метод построения уравнения регрессии с включением фактора времени. Метод корреляции первых разностей или абсолютных приростов первого порядка. Применяется, если оба ряда динамики опис линейным трендом.
О тесноте связи между рядами и судят по коэффициенту корреляции Изучение корреляции между временными рядами по случайным отклонениям от тренда Наличие в этих рядах тенденции может привести к искажению выводов о тесноте связи между этими показателями. Неверные выводы относ связи между двумя рядами назыв ложной корреляцией. Она обусл наличием в рядах тенденции, поэтому чтобы дать точную характеристику связи между рядами необходимо каким-то образом исключить влияние тенденции на показатель тесно ты связи.
Методы исключения тенденции: 1. Метод корреляции первых разностей или абсолютных приростов первого порядка. 2. Метод корреляции случайных отклонений от тренда. 3. Метод построения уравнения регрессии с включением фактора времени. Метод корреляции случайных отклонений от тренда.
По судят о тесноте связи между рядами и .
Модель регрессии с включением переменной времени Наличие в этих рядах тенденции может привести к искажению выводов о тесноте связи между этими показателями. Неверные выводы относ связи между двумя рядами назыв ложной корреляцией. Она обусл наличием в рядах тенденции, поэтому чтобы дать точную характеристику связи между рядами необходимо каким-то образом исключить влияние тенденции на показатель тесно ты связи. Методы исключения тенденции: 1. Метод корреляции первых разностей или абсолютных приростов первого порядка. 2. Метод корреляции случайных отклонений от тренда. 3. Метод построения уравнения регрессии с включением фактора времени. Метод построения уравнения регрессии с включением фактора времени. Оценка значимости параметра b. Если b значим, то связь между x и y имеет место. Метод рекоменд применять для рядов, опис линейными трендами. Очень хорошая интерпретация получ результатов. Коэффициент b показывает среднее изменение при единичном изменении при условии отсутствия тенденции. Коэффициент с показывает среднее в единицу времени изменение результата при неизм знач ПО этому методу можно проводить прогнозирование значений . Прогнозирование как по множеств регрессии.
|
|||||
Последнее изменение этой страницы: 2016-04-26; просмотров: 524; Нарушение авторского права страницы; Мы поможем в написании вашей работы! infopedia.su Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Обратная связь - 3.147.46.174 (0.009 с.) |