Заглавная страница Избранные статьи Случайная статья Познавательные статьи Новые добавления Обратная связь FAQ Написать работу КАТЕГОРИИ: ТОП 10 на сайте Приготовление дезинфицирующих растворов различной концентрацииТехника нижней прямой подачи мяча. Франко-прусская война (причины и последствия) Организация работы процедурного кабинета Смысловое и механическое запоминание, их место и роль в усвоении знаний Коммуникативные барьеры и пути их преодоления Обработка изделий медицинского назначения многократного применения Образцы текста публицистического стиля Четыре типа изменения баланса Задачи с ответами для Всероссийской олимпиады по праву
Мы поможем в написании ваших работ! ЗНАЕТЕ ЛИ ВЫ?
Влияние общества на человека
Приготовление дезинфицирующих растворов различной концентрации Практические работы по географии для 6 класса Организация работы процедурного кабинета Изменения в неживой природе осенью Уборка процедурного кабинета Сольфеджио. Все правила по сольфеджио Балочные системы. Определение реакций опор и моментов защемления |
Использование фиктивной переменной во множественной регрессииСодержание книги
Поиск на нашем сайте Качественные признаки: · Пол · Профессия · Образование · Климатические условия · Принадлежность к какому-либо региону Чтобы ввести эти признаки в модель, им присваивают цифровые метки, т.е. качеств.-е переменные преобразуют в колич.-е. Такого вида переменные в эконометрике принято называть фиктивными переменными. Рассмотрим применение фиктивных переменных для ф-ции спроса (D). Пусть по группе лиц М и Ж пола изучается зависимость потребления кофе (у) от цены (х). у=а+bx Если мы хотим получить уравнения для М и Ж отдельно,то: у1=а1+b1x1 У2=а2+b2x2. Тогда различия в потреблении проявятся в различии средних величин ӯ1и ӯ2. Вместе с тем сила влияния фактора не результат может оказаться примерно одинаковой, т.е. b≈b1≈b2. В этом случае возможно построение общего уравнения регрессии с включением в него фактора «пол» в виде фиктивной переменной. Ур-ние тогда будет иметь вид: у= А+А1z1+bx1
0 - Ж Зависимость потребления кофе для М: у= А+А1+bx, для Ж: у= А+bx. Различия будут состоять лишь в разнице свободного члена. Если число градаций качественного признака >2, то в модель вводится несколько фиктивных переменных, число кот. д. б. < числа качественных градаций на 1. В этом случае возможна оценка параметров модели с помощью МНК. 21. Мультиколлинеарность факторов- понятие, проявление и меры устранения Мультиколлениарность факторов – тесная корреляционная взаимосвязь между отбираемыми для анализа факторами, совместно воздействующими на общий результат, которая затрудняет оценивание регрессионных параметров Мульт-ность. ф – наличие высокой линейной связи между всеми или несколькими факторами. Причинами возникновения мультиколлинеарности между признаками являются: 1. Изучаемые факторные признаки, характеризуют одну и ту же сторону явления или процесса. Например, показатели объема производимой продукции и среднегодовой стоимости основных фондов одновременно включать в модель не рекомендуется, так как они оба характеризуют размер предприятия; 2. Использование в качестве факторных признаков показателей, суммарное значение которых представляет собой постоянную величину;
3. Факторные признаки, являющиеся составными элементами друг друга; 4. Факторные признаки, по экономическому смыслу дублирующие друг друга. 5. Одним из индикаторов определения наличия мультиколлинеарности между признаками является превышение парным коэффициентом корреляции величины 0,8 (rxi xj) и др. Наличие мультиколлинеарности факторов может означать, что некоторые факторы будут всегда действовать в унисон, и в результате нельзя будет оценить воздействие каждого фактора в отдельности. Включение в модель мультиколлинеарных факторов нежелательно в силу следующих последствий: 1) оценки параметров становятся ненадежными, обнаруживают большие стандартные ошибки и меняются с изменением объема наблюдений (не только в величине, но и по знаку), что делает модель непригодной для анализа и прогнозирования. 2) затрудняется интерпретация параметров множественной регрессии как характеристик действия факторов в «чистом» виде, ибо факторы коррелированны; параметры линейной регрессии теряют экономический смысл; 3) нельзя определить изолированное влияние факторов на результативный показатель. Для оценки мультиколлинеарности факторов может использоваться определитель матрицы парных коэффициентов корреляции между факторами. Чем ближе к 0 определитель матрицы межфакторной корреляции, тем сильнее мультиколлениарность факторов и ненадежнее результаты множественной регрессии. Чем ближе определитель к 1 – тем ниже мультиколлениарность.
Если между факторами существует высокая корреляция, то нельзя определить их изолированное влияние на результативный показатель и параметры уравнения регрессии оказываются неинтерпретируемыми. Существуют различные подходы преодоления сильной межфакторной корреляции. Простейший из них - исключение из модели фактора (или факторов), в наибольшей степени ответственных за мультиколлинеарность при условии, что качество модели при этом пострадает несущественно (а именно,
|
||
|
Последнее изменение этой страницы: 2016-08-01; просмотров: 467; Нарушение авторского права страницы; Мы поможем в написании вашей работы! infopedia.su Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Обратная связь - 216.73.216.102 (0.006 с.) |