Тема 28. Прямые и плоскости в пространстве



Мы поможем в написании ваших работ!


Мы поможем в написании ваших работ!



Мы поможем в написании ваших работ!


ЗНАЕТЕ ЛИ ВЫ?

Тема 28. Прямые и плоскости в пространстве



Задание 61.Определите взаимное расположение прямых и плоскостей, проходящих через вершины куба ABCDA1B1C1D1.

 

 

1.СА и (DCB); ВA1 и (DCB); D1А1 и (DCB);

BC1 и (DD1C1); B1C и DC1; DD1 и CC1;

BB1 и DC; A1B1 и BC; (A1BB1 ) и (CDC1).

2.СС1 и (DCB); AA1 и (DCB); D1C1 и (DCB);

B1C1 и (DD1C1); B1C1 и DC1; A1D1 и DC1;

BB1 и AC; A1B и BC; A1B и DC1.

3.СС1 и (ACB); AA1 и (DCC1); D1C1 и (ACB);

B1C и (DD1C1); BC1 и DC1; A1D1 и DC;

BB1 и AC; A1B и DC; (A1BC) и (ADD1).

4.СA1 и (DCB); AA1 и (DCB); D1C1 и (CBD);

B1C1 и (DD1C1); B1C1 и DC1; A1D1 и DC1;

BB1 и AC; A1B и BC; (AA1B)и (DCC1).

5.B1C и DC1; DD1 и CC1; BC1 и (DD1C1);

BB1 и DC; A1B1и BC; (A1BB1 ) и (CDC1);

СА и (DCB); ВA1 и (DCB); D1А1 и (DCB);

6.BB1 и AC; A1B и BC; (AA1B) и DD1C ;

СС1 и (DCB); AA1 и (DCB); D1C1 и (DCB);

B1C1 и (DD1C1); B1C1 и DC1; A1D1 и DC1 .

7.B1C и (DD1C1); BC1 и DC1; A1D1 и DC;

СС1 и (ACB); AA1 и (DCC1); D1C1 и (ACB);

BB1 и AC; A1B и DC; (A1BC)и (ADD1).

8.B1C1 и (DD1C1); B1C1 и DC1; A1D1 и DC1;

СA1 и (DCB); AA1 и (DCB); D1C1 и (CBD);

BB1 и AC; A1B и BC; (AA1B) и (DCC1).

 

9.СА и (DCB); ВA1 и (DCB); D1А1 и (DCB);

BC1 и (DD1C1); B1C и DC1; DD1 и CC1;

BB1 и DC; A1B1и BC; (A1BB1) и (CDC1).

10.СС1 и (DCB); AA1 и (DCB); D1C1 и (DCB);

B1C1 и (DD1C1); B1C1 и DC1; A1D1 и DC1;

BB1 и AC; A1B и BC; (AA1B) и DD1C .

11.СA1 и (DCB); AA1 и (DCB); D1C1 и (CBD);

B1C1 и (DD1C1); B1C1 и DC1; A1D1 и DC1;

BB1 и AC; A1B и BC; (AA1B) и (DCC1).

 

12.B1C и DC1; DD1 и CC1; BC1 и (DD1C1);

BB1 и DC; A1B1и BC; (A1BB1) и (CDC1);

СА и (DCB); ВA1 и (DCB); D1А1 и (DCB).

13.BB1 и AC; A1B и BC; (AA1B)и (DD1C) ;

СС1 и (DCB); AA1 и (DCB); D1C1 и (DCB);

B1C1 и (DD1C1); B1C1 и DC1; A1D1 и DC1.

14.B1C и (DD1C1); BC1 и DC1; A1D1 и DC;

СС1 и (ACB); AA1 и (DCC1); D1C1 и (ACB);

BB1 и AC; A1B и DC; (A1BC) и (ADD1).

15.B1C1 и (DD1C1); B1C1 и DC1; A1D1 и DC1;

СA1 и (DCB); AA1 и (DCB); D1C1 и (CBD);

BB1 и AC; A1B и BC; (AA1B) и (DCC1).

16.BB1 и AC; A1B и BC; (AA1B) и DD1C ;

СС1 и (DCB); AA1 и (DCB); D1C1 и (DCB);

B1C1 и (DD1C1); B1C1 и DC1; A1D1 и DC1 .

17.A1B и DC; BC1 и DC1; A1D1 и DC;

СС1 и (ACB); AA1 и (DCC1); D1C1 и (ACB);

BB1 и AC; B1C и (DD1C1); (A1BC)и (ADD1).

18.BB1 и AC; B1C1 и DC1; СА и (DCB);

B1C1 и (DD1C1); ВA1 и (DCB); AA1 и (DCB);

D1C1 и (CBD); A1B и BC; (AA1B)и (DCC1).

19.СA1 и (DCB); D1А1 и (DCB); A1D1 и DC1;

BC1 и (DD1C1); B1C и DC1; DD1 и CC1;

BB1 и DC; A1B1и BC; (A1BB1) и (CDC1).

 

20.СС1 и (DCB); AA1 и (DCB); D1C1 и (DCB);

B1C1 и (DD1C1); B1C1 и DC1; A1D1 и DC1;

BB1 и AC; A1B и BC; (AA1BDD1C .

21.СA1 и (DCB); AA1 и (DCB); D1C1 и (CBD);

B1C1 и (DD1C1); B1C1 и DC1; A1D1 и DC1;

BB1 и AC; A1B и BC; (AA1B)и (DCC1).

22.B1C и DC1; DD1 и CC1; BC1 и (DD1C1);

BB1 и DC; A1B1 и BC; (A1BB1) и (CDC1);

СА и (DCB); ВA1 и (DCB); D1А1 и (DCB).

23.BB1 и AC; A1B и BC; (AA1B) и (DD1C);

СС1 и (DCB); AA1 и (DCB); D1C1 и (DCB);

B1C1 и (DD1C1); B1C1 и DC1; A1D1 и DC1.

24.BC1 и DC1 ; B1C и (DD1C1); A1D1 и DC;

СС1 и (ACB); AA1 и (DCC1); D1C1 и (ACB);

BB1 и AC; A1B и DC; (A1BC) и (ADD1).

25.A1B и BC; B1C1 и DC1; A1D1 и DC1;

СA1 и (DCB); AA1 и (DCB); D1C1 и (CBD);

B1C1 и (DD1C1); BB1 и AC; (AA1B)и (DCC1).

Задание 62.Дан куб ABCDA1B1C1D1.

 

1.Найти все прямые и плоскости, проходящие через вершины куба перпендикулярно прямой AB.

 

2.Найти все прямые и плоскости, проходящие через вершины куба перпендикулярно плоскости AСB.

 

3.Найти все прямые и плоскости, проходящие через вершины куба перпендикулярно прямой AD.

 

4.Найти все прямые и плоскости, проходящие через вершины куба перпендикулярно плоскости A1AB.

 

5.Найти все прямые и плоскости, проходящие через вершины куба перпендикулярно прямой A1B1.

 

6.Найти все прямые и плоскости, проходящие через вершины куба перпендикулярно плоскости AСD.

 

7.Найти все прямые и плоскости, проходящие через вершины куба перпендикулярно прямой CD.

 

8.Найти все прямые и плоскости, проходящие через вершины куба перпендикулярно плоскости AA1B1.

 

9.Найти все прямые и плоскости, проходящие через вершины куба перпендикулярно прямой B1C1.

 

10.Найти все прямые и плоскости, проходящие через вершины куба перпендикулярно плоскости AA1D1.

 

11.Найти все прямые и плоскости, проходящие через вершины куба перпендикулярно прямой C1D1.

 

12.Найти все прямые и плоскости, проходящие через вершины куба перпендикулярно плоскости BB1C1.

 

13.Найти все прямые и плоскости, проходящие через вершины куба перпендикулярно прямой B1B.

 

14.Найти все прямые и плоскости, проходящие через вершины куба перпендикулярно плоскости ADD1.

 

15.Найти все прямые и плоскости, проходящие через вершины куба перпендикулярно прямой D1D.

 

16.Найти все прямые и плоскости, проходящие через вершины куба перпендикулярно плоскости DD1C1.

 

17.Найти все прямые и плоскости, проходящие через вершины куба перпендикулярно прямой A1D1.

 

18.Найти все прямые и плоскости, проходящие через вершины куба перпендикулярно плоскости B1C1B.

 

19.Найти все прямые и плоскости, проходящие через вершины куба перпендикулярно прямой CC1.

 

20.Найти все прямые и плоскости, проходящие через вершины куба перпендикулярно плоскости B1C1D1.

21.Найти все прямые и плоскости, проходящие через вершины куба перпендикулярно прямой BA.

 

22.Найти все прямые и плоскости, проходящие через вершины куба перпендикулярно плоскости B B1C.

 

23.Найти все прямые и плоскости, проходящие через вершины куба перпендикулярно прямой B1C1.

 

24.Найти все прямые и плоскости, проходящие через вершины куба перпендикулярно плоскости CB1C1.

 

25.Найти все прямые и плоскости, проходящие через вершины куба перпендикулярно прямой DA.

Задание 63.Решите расчетные задачи по теме «Прямая и плоскость.

 

1.Из данной точки на плоскость опущен перпендикуляр и проведены две наклонные. Одна наклонная на 6 см длиннее другой. Их проекции на плоскости соответственно равны 27 см и 15 см. Найти длину перпендикуляра.

 

2.Отношение длин двух отрезков, каждый из которых соединяет точки параллельных плоскостей, равно 2 : 3. Эти отрезки с плоскостями составляют углы, отношение которых равно 2. Найти косинус большего из этих углов.

 

3.Угол между плоскостями α и β равен 600. Расстояние от точки А на плоскости α до линии пересечения плоскостей равно 3. Найти расстояние от точки А до плоскости β.

 

4.Из одной точки плоскости проведены две наклонные, отношение длин которых равно 1 : 2. Найти длины этих наклонных, если их проекции соответственно равны 1 и 7.

 

5.Из точки О пересечения диагоналей равнобедренной трапеции к плоскости трапеции восстановлен перпендикуляр ОМ длиной 15 см. Длина диагонали трапеции 12 см, при этом меньшее основание в два раза короче большего основания. На каком расстоянии от вершины большего основания находится точка М ?

 

6.Через конец А отрезка АВ проведена плоскость. Через точки В и С этого отрезка проведены параллельные прямые, пересекающие плоскость в точках B1 и C1соответственно. Найдите длину отрезка ВB1, если СC1= 15 см и АС : ВС = 2 : 3.

 

7.Стороны треугольника 10, 17 и 21 см. Из вершины наибольшего угла восстановлен перпендикуляр к плоскости треугольника, длина которого 15 см. Найти расстояние от конца (не лежащего на плоскости) перпендикуляра до наибольшей стороны треугольника.

 

8.Плоскости α и β пересекаются под углом 450. Расстояние от точки А на плоскости α до плоскости β равно 2. Найти расстояние от точки А до линии пересечения плоскостей.

 

9.Отрезок АВ пересекает плоскость α в точке О. Конец В отрезка отстоит от плоскости α на расстоянии 8. На каком расстоянии от плоскости находится конец А отрезка, точкой О отрезок АВ делится в отношении АО : ОВ = 3 : 2?

 

10.Концы двух отрезков с длинами 10 и 15 см лежат на параллельных плоскостях. Чему равна проекция второго отрезка на одну из этих плоскостей, если проекция первого отрезка на эту плоскость равна ?

 

11.Катеты прямоугольного треугольника 12 и 16 см. Найти расстояние от точки, отстоящей от вершин треугольника на 26 см, до плоскости треугольника.

12.Через центр О квадрата АВСD проведен перпендикуляр OF к плоскости квадрата. Найти угол между плоскостями BCF и АВСD, если FB = 5, ВС = 6.

 

13.Из данной точки к плоскости проведены две наклонные, разность длин которых равна 6. Проекции наклонных на эту плоскость равны 27 и 15. Найти расстояние от данной точки до плоскости.

 

14.Через вершину В прямого угла треугольника АВС проведена прямая b, перпендикулярная плоскости треугольника. Найти расстояние между прямыми b и AD, если АВ = 3 и BD = 4.

15.Из одной точки к плоскости проведены две наклонные, отношение длин которых равно 3 : 5. Найти длины этих наклонных, если их проекции соответственно равны и 17.

 

16.Из точки, отстоящей от плоскости на расстоянии а, проведены две наклонные, образующие с плоскостью угол 450 , а между собой угол в 600. Найти расстояние между концами наклонных.

 

17.Из точки, отстоящей от плоскости на расстоянии b, проведены две наклонные, образующие с плоскостью углы в 300 и 450, а между собой прямой угол. Найти расстояние между концами наклонных.

 

18.Через вершину С прямого угла треугольника АВС проведена прямая а, перпендикулярная плоскости треугольника. Найти расстояние между прямыми а и , если АС =15, = 20.

 

19.Из точки к плоскости проведены две наклонные длиной 23 и 33 см. Найти расстояние от точки до плоскости, если проекции наклонных относятся как 2 : 3.

20.Из данной точки проведены перпендикуляр и две наклонные к прямой. Наклонные равны 41 и 50 см. Проекции наклонных на прямой относятся как 3 : 10. Найти длину перпендикуляра.

 

21.Отрезок АВ пересекает плоскость α. Его концы отстают от плоскости на расстоянии 2 и 4 см. Найти угол между этим отрезком и плоскостью α, если проекция отрезка на плоскость равна 6 см.

22.Из точки к плоскости проведены две наклонные длиной 13 и 37 см. Найти расстояние от точки до плоскости, если проекции наклонных относятся как 1 : 7.

23.Из точки к плоскости проведены две наклонные длиной 10 и 15 см. Найти проекцию второй наклонной на эту плоскость, если проекция первой равна 7 см.

 

24.Расстояния от точки А до граней прямого двугранного угла равны 5 и 12 см. Найти расстояние от точки А до ребра двугранного угла.

 

25.Из точки к плоскости проведены две наклонные, длины которых относятся как 5 : 6. Найти расстояние от этой точки до плоскости, если соответствующие проекции наклонных равны 4 см и 4 см.

 

Тема 29. Многогранники

Задание 64.Найдите длины диагоналей, площадь диагонального сечения, площадь полной поверхности и объем куба, ребро которого равно а. Построить куб и развертку куба.

 

1.а = 2 м. 2. а = 20 см. 3. а = 3 см.

 

4.а = 10 м. 5. а = 15 см. 6. а = 13 см.

 

7. а = 2 м. 8. а = 5 см. 9. а = 6 см.

 

10.а = 2 м. 11. а = 11 см. 12. а = 14 см.

 

13.а = 4 м. 14. а = 7 см. 15. а = 9 см.

 

16.а = 2,5 м. 17. а = 2,4 см. 18. а = 1,3 см.

 

19.а = 12 м. 20. а = 21 см. 21. а = 16 см.

 

22. а = 4,2 м. 23. а = 18 см. 24. а = 3,1 м.

 

25. а = 25 м.

Задание 65.Найдите длины диагоналей, площадь полной поверхности и объем прямоугольного параллелепипеда с ребрами a, b, с. Построить развертку полной поверхности параллелепипеда.

 

1.а = 1 см, b = 3 см, с = 4 см. 2. а = 1 см, b = 3 см, с = 4 см.

 

3. а = 5 см, b = 7 см, с = 6 см. 4. а = 10 см, b = 3 см, с = 9 см.

 

5. а = 4 см, b = 8 см, с = 9 см. 6. а = 7 см, b = 4 см, с = 5 см.

 

7. а = 5 см, b = 9 см, с = 7 см. 8. а = 10 см, b = 4 см, с = 3 см.

 

9. а = 3 см, b = 3 см, с = 6 см. 10. а =8 см, b = 2 см, с = 4 см.

 

11. а = 9 см, b = 8 см, с = 6 см. 12. а = 6 см, b = 3 см, с = 9 см.

 

13. а = 9 см, b = 7 см, с = 5 см. 14. а = 5 см, b = 6 см, с = 7 см.

 

15. а = 4 см, b = 8 см, с = 3 см. 16. а = 3 см, b = 4 см, с = 5 см.

 

17. а = 5 см, b = 1 см, с = 6 см. 18. а = 2 см, b = 3 см, с = 4 см.

 

19. а = 8 см, b = 8 см, с = 5 см. 20. а = 5 см, b = 6 см, с = 7 см.

 

21. а = 2 м, b = 4 м, с = 2 м. 22. а =16 см, b =4 см, с = 5 см.

 

23. а = 9 м, b = 1 м, с = 6 м. 24. а = 6 см, b = 3 см, с = 7 см.

 

25. а = 1 м, b = 8 м, с = 4 м.

 

Задание 66.Найти площадь полной поверхности и объем правильной треугольной призмы, у которой каждое ребро равно a. Построить развертку полной поверхности призмы.

 

1.а = 2 см. 2. а = 20 см. 3. а = 3 см.

 

4.а = 10 м. 5. а = 15 см. 6. а = 13 см.

 

7. а = 2,5 см. 8. а = 5 см. 9. а = 6 см.

 

10.а = 7 см. 11. а = 11 см. 12. а = 14 см.

 

13.а = 4 м. 14. а = 40 см. 15. а = 9 см.

 

16.а = 2,5 м. 17. а = 2,4 см. 18. а = 1,3 см.

 

19.а = 12 м. 20. а = 21 см. 21. а = 16 см.

 

22. а = 4,2 см. 23. а = 18 см. 24. а = 3,1 см.

 

25. а = 25 м.

 

Задание 67.Найдите апофему, высоту, площадь полной поверхности и объем правильной четырехугольной пирамиды, у которой каждое ребро равно a. Построить пирамиду и развертку полной поверхности пирамиды.

 

1.а = 22 см. 2. а = 20 см. 3. а = 3 см.

 

4.а = 10 м. 5. а = 15 см. 6. а = 13 см.

 

7. а = 14 см. 8. а = 5 см. 9. а = 6 см.

 

10.а = 20 см. 11. а = 11 см. 12. а = 2,4 см.

 

13.а = 4 м. 14. а = 7 см. 15. а = 9 см.

 

16.а = 2,5 м. 17. а = 2,4 см. 18. а = 1,3 см.

 

19.а = 12 см. 20. а = 21 см. 21. а = 16 см.

 

22. а = 4,2 см. 23. а = 18 см. 24. а = 3,1 м.

 

25. а = 25 м.

 



Последнее изменение этой страницы: 2016-04-21; Нарушение авторского права страницы; Мы поможем в написании вашей работы!

infopedia.su Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Обратная связь - 3.237.2.4 (0.011 с.)