Заглавная страница Избранные статьи Случайная статья Познавательные статьи Новые добавления Обратная связь FAQ Написать работу КАТЕГОРИИ: АрхеологияБиология Генетика География Информатика История Логика Маркетинг Математика Менеджмент Механика Педагогика Религия Социология Технологии Физика Философия Финансы Химия Экология ТОП 10 на сайте Приготовление дезинфицирующих растворов различной концентрацииТехника нижней прямой подачи мяча. Франко-прусская война (причины и последствия) Организация работы процедурного кабинета Смысловое и механическое запоминание, их место и роль в усвоении знаний Коммуникативные барьеры и пути их преодоления Обработка изделий медицинского назначения многократного применения Образцы текста публицистического стиля Четыре типа изменения баланса Задачи с ответами для Всероссийской олимпиады по праву Мы поможем в написании ваших работ! ЗНАЕТЕ ЛИ ВЫ?
Влияние общества на человека
Приготовление дезинфицирующих растворов различной концентрации Практические работы по географии для 6 класса Организация работы процедурного кабинета Изменения в неживой природе осенью Уборка процедурного кабинета Сольфеджио. Все правила по сольфеджио Балочные системы. Определение реакций опор и моментов защемления |
Б. Методика катетеризации лучевой артерии.Содержание книги
Поиск на нашем сайте
Одна из методик катетеризации лучевой артерии приведена на рис. 6-11. Супинация и разгибание кисти обеспечивают оптимальный доступ к лучевой артерии. Предварительно следует собрать систему катетер-магистраль-преобразователь и заполнить ее гепаринизированным раствором (примерно 0,5-1 ЕД гепарина на каждый мл раствора), т. е. подготовить систему для быстрого подключения после катетеризации артерии. Рис. 6-11. Катетеризация лучевой артерии. А. Решающим моментом является правильная укладка конечности и пальпация артерии. Кожу обрабатывают антисептиком и через иглу 25-го размера инфильтрируют местным анестетиком в проекции артерии, Б. Катетером на игле 20-22-го размера прокалывают кожу под углом 45°. В. Появление крови в павильоне свидетельствует о попадании в артерию. Угол вкола уменьшают до 30°, и катетер на игле продвигают еще на 2 мм в глубь артерии. Г. Катетер вводят в артерию по игле, которую затем удаляют. Д. Пережимая артерию средним и безымянным пальцами проксимальнее катетера, предотвращают выброс крови во время подсоединения магистрали через коннектор типа Люера Путем поверхностной пальпации кончиками указательного и среднего пальцев недоминантной руки анестезиолог определяет пульс на лучевой артерии и ее расположение, ориентируясь на ощущение максимальной пульсации. Кожу обрабатывают йодоформом и раствором спирта и через иглу 25-27-го размера инфильтрируют 0,5 мл лидокаина в проекции артерии. Тефлоновым катетером на игле 20-22-го размера прокалывают кожу под углом 45°, после чего продвигают его по направлению к точке пульсации. При появлении крови в павильоне угол вко-ла иглы уменьшают до 30° и для надежности продвигают вперед еще на 2 мм в просвет артерии. Катетер вводят в артерию по игле, которую затем удаляют. Во время подсоединения магистрали артерию пережимают средним и безымянным пальцами проксимальнее катетера, чтобы предотвратить выброс крови. Катетер фиксируют к коже водоустойчивым лейкопластырем или швами. В. Осложнения. К осложнениям интраартери-ального мониторинга относятся гематома, спазм артерии, тромбоз артерии, воздушная эмболия и тромбоэмболия, некроз кожи над катетером, повреждение нервов, инфекция, потеря пальцев (вследствие ишемического некроза), непреднамеренное внутриартериальное введение препаратов. Факторами риска являются длительная катетеризация, гиперлипидемия, многократные попытки катетеризации, принадлежность к женскому полу, применение экстракорпорального кровообращения, использование вазопрессоров. Риск развития осложнений снижают такие меры, как уменьшение диаметра катетера по отношению к просвету артерии, постоянная поддерживающая инфузия раствора гепарина со скоростью 2-3 мл/ч, уменьшение частоты струйных промываний катетера и тщательная асептика. Адекватность перфузии при катетеризации лучевой артерии можно непрерывно контролировать путем пульсоксиметрии, размещая датчик на указательном пальце ипсилатеральной кисти. Клинические особенности Поскольку внутриартериальная катетеризация обеспечивает длительное и непрерывное измерение давления в просвете артерии, эта методика считается "золотым стандартом" мониторинга артериального давления. Вместе с тем качество преобразования пульсовой волны зависит от динамических характеристик системы катетер-магистраль-преобразователь (рис. 6-12). Ошибка в результатах измерения артериального давления чревата назначением неправильного лечения. Пульсовая волна в математическом отношении является сложной, ее можно представить как сумму простых синусоидных и косинусоидных волн. Методика преобразования сложной волны в несколько простых называется анализом Фурье. Чтобы результаты преобразования были достоверными, система катетер-магистраль-преобразователь должна адекватно реагировать на самые высокочастотные колебания артериальной пульсовой волны (рис. 6-13). Иными словами, естественная частота колебаний измеряющей системы должна превышать частоту колебаний артериального пульса (приблизительно 16-24 Гц). Кроме того, система катетер-магистраль-преобразователь должна предотвращать гиперрезонансный эффект, возникающий в результате реверберации волн в просвете трубок системы. Оптимальный демпинговый коэффициент (β) составляет 0,6-0,7. Демпинговый коэффициент и естественную частоту колебаний системы катетер-магистраль-преобразователь можно рассчитать при анализе кривых осцилляции, полученных при промывании системы под высоким давлением (рис. 6-14). Рис. 6-12. Система катетер-магистраль-преобразователь Рис. 6-13. На этих иллюстрациях представлено совмещение исходной пульсовой волны с реконструкциями, полученными с помощью анализа Фурье: слева реконструкция воспроизведена по четырем гармоникам, справа — по восьми. Следует отметить, что чем больше число гармоник, тем точнее реконструкция соответствует исходной волне. (Из: Saidman L. S., Smith W. T. Monitoring in Anesthesia. Butterworths, 1984. Воспроизведено с разрешения.) Уменьшение длины и растяжимости трубок, удаление лишних запорных кранов, предотвращение появления воздушных пузырьков — все эти мероприятия улучшают динамические свойства системы. Хотя внутрисосудистые катетеры малого диаметра снижают естественную частоту колебаний, они позволяют улучшить функционирование системы с низким демпинговым коэффициентом и уменьшают риск возникновения сосудистых осложнений. Если катетер большого диаметра ок-клюзирует артерию полностью, то отражение волн приводит к ошибкам в измерении артериального давления. Преобразователи давления эволюционировали от громоздких приспособлений многократного использования к миниатюрным одноразовым датчикам. Преобразователь превращает механическую энергию волн давления в электрический сигнал. Большинство преобразователей основано на принципе измерения напряжения: растяжение проволоки или силиконового кристалла изменяет их электрическое сопротивление. Чувствительные элементы расположены как контур мостика сопротивления, поэтому вольтаж на выходе пропорционален давлению, воздействующему на диафрагму. От правильной калибровки и процедуры установки нулевого значения зависит точность измерения артериального давления. Преобразователь устанавливают на желаемом уровне — обычно это среднеподмышечная линия, открывают запорный кран, и на включенном мониторе высвечивается нулевое значение артериального давления. Если во время операции положение больного изменяют (при изменении высоты операционного стола), то преобразователь необходимо переместить одновременно с больным или переустановить нулевое значение на новом уровне среднеподмышечной линии. В положении сидя артериальное давление в сосудах головного мозга существенно отличается от давления в левом желудочке сердца. Поэтому в положении сидя артериальное давление в сосудах мозга определяют, установив нулевое значение на уровне наружного слухового прохода, что приблизительно соответствует уровню виллизиева круга (артериального круга большого мозга). Преобразователь следует регулярно проверять на предмет "дрейфа" нуля — отклонения, обусловленного изменением температуры. Наружное калибрование заключается в сравнении значений давления преобразователя с данными ртутного манометра (рис. 6-15). Ошибка измерения должна находиться в пределах 5 %; если ошибка больше, то следует отрегулировать усилитель монитора. Современные преобразователи редко нуждаются в наружном калибровании. Цифровые значения АДсист. и АДдиаст. являются средними значениями соответственно наиболее высоких и наиболее низких показателей артериального давления за определенный период времени. Так как случайное движение или работа электрока-утера могут искажать значения артериального давления, то необходим мониторинг конфигурации пульсовой волны. Конфигурация пульсовой волны предоставляет ценную информацию о гемодинами-ке. Так, крутизна подъема восходящего колена пульсовой волны характеризует сократимость миокарда, крутизна спуска нисходящего колена пульсовой волны определяется общим периферическим сосудистым сопротивлением, значительная вариабельность размеров пульсовой волны в зависимости от фазы дыхания указывает на гиповолемию. Значение АДср. рассчитывают с помощью интегрирования площади под кривой. Внутриартериальные катетеры обеспечивают возможность частого анализа газов артериальной крови. Рис. 6-14. Промывание под высоким давлением позволяет измерить демпинг (затухание) и естественную частоту системы катетер-магистраль-преобразователь. (Из: Blitt C. D. Monitoring in Anesthesia and Critical Care Medicine, 2nd ed. Churchill Livingstone, 1990. Воспроизведено с разрешения.) Рис. 6-15. Наружное калибрование преобразователя по ртутному манометру. Давление нагнетают до 200 мм рт. ст. и постепенно снижают до 50 мм рт. ст. Необходимо соблюдать стерильность и избегать попадания воздуха в магистраль. Ошибка измерения находится в пределах 5 % В последнее время появилась новая разработка — волоконно-оптический датчик, вводимый в артерию через катетер 20-го размера и предназначенный для длительного непрерывного мониторинга газов крови. Через оптический датчик, кончик которого имеет флюоресцентное покрытие, передается свет высокой энергии. В результате флюоресцентный краситель испускает свет, волновые характеристики которого (длина и интенсивность волны) зависят от рН, PCO2 и PO2 (оптическая флюоресценция). Монитор определяет изменения флюоресценции и отражает на дисплее соответствующие значения газового состава крови. К сожалению, стоимость этих датчиков высока. Электрокардиография
|
||||
Последнее изменение этой страницы: 2016-04-20; просмотров: 360; Нарушение авторского права страницы; Мы поможем в написании вашей работы! infopedia.su Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Обратная связь - 52.14.252.16 (0.007 с.) |