Мы поможем в написании ваших работ!



ЗНАЕТЕ ЛИ ВЫ?

Можно ли сходным образом рассчитать фармакокинетические параметры для закиси азота.

Поиск

Аналогичные вышеприведенным расчеты справедливы и для закиси азота, хотя с двумя уточнениями. Во-первых, при атмосферном давлении нельзя назначить 1,3 МАК (приблизительно 137 % закиси азота) вследствие неизбежной гипоксии. Во-вто­рых, шунт в хорошо васкуляризованных тканях дос­тигает 30 %, поэтому в кровоток попадает лишь 70 % от расчетного количества закиси азота. Это приво­дит к необходимости введения корректировочного шунт-фактора 0,7 в уравнение поглощения:

Поглощение анестетика = 0,7 х 0,47 х % N2O х Q. При массе 70 кг и концентрации закиси азота 65 %:

QN2O к концу 1-й минуты = 0,7 х 0,47 х 65 х (2) х (24,2) = 1035 мл/мин.

Дозоединица для закиси азота составляет:

Дозоединица = 2 х QN2O к концу 1-й минуты = 2070 мл/мин.

Требуется большая насыщающая доза:

Заполнение дыхательного контура = = (ФОЕ + Объем дыхательного контура) х 65 % =

= 1000дл х 0,65 = 65 дл. Насыщение артериальной крови =

= ОЦК х λк/г х 65 % =

= 50дл х 0,45 х 0,65 = 15дл.

Общая насыщающая доза = 65 дл + 15 дл =

= 80дл = 8 л.

Следовательно, в 1-ю минуту анестезии закисью азота необходимо ингалировать несколько литров закиси азота. В клинической практике достаточно количества, заполняющего дыхательный контур, о чем судят по дыхательному мешку или мехам вен­тилятора. Если фракционная концентрация кисло­рода в выдыхаемой смеси снижается ниже прием­лемого уровня, следует увеличить поток кислорода до уровня, превышающего базальное потребление (242 мл/мин). Закись азота можно сочетать с дру­гими ингаляционными и неингаляционными анес-тетиками. Так как МАК складываются, добавления 0,65 МАК любого ингаляционного анестетика бу­дет достаточно для адекватной анестезии.

Коротко опишите первые несколько минут анестезии по закрытому контуру с использованием галотана и закиси азота

После предварительной оксигенации, внутривен­ной индукции анестезии и интубации устанавли­вают поток кислорода в соответствии с рассчитан­ными метаболическими потребностями (242 мл/ мин). Параллельно с этим вводят насыщающую дозу закиси азота для заполнения дыхательного контура и легких (6-8 л/мин). Когда фракционная концентрация кислорода в выдыхаемой смеси сни­жается до 40 %, подачу закиси азота снижают до рассчитанной для интервала, равного "квадратно­му корню времени" (2070 мл), а также закрывают клапан выдоха. Если меха вентилятора или дыха­тельный мешок сигнализируют об изменении объема дыхательного контура, то, соответственно, корректируют подачу закиси азота. Если снижает­ся фракционная концентрация кислорода в выды­хаемой смеси, то увеличивают подачу кислорода. Насыщающая доза и дозоединица анестетика рас­считывается по любому из приведенных методов. На расчетные интервалы и дозы можно только ориентироваться. Реальная доза зависит от симп­томов, по которым судят о глубине анестезии: артериальное давление, ЧСС, частота дыхания, ре­акция зрачка, слезотечение, потоотделение, двига­тельная активность и пр.

Избранная литература

Bennett D. R. (editor-in-chief). AMA Drug Evaluation Annual American Medical Association, 1994.

Brown B. R. Development of concepts of hepa-totoxicity of halogenated anesthetics. Semin. Anesth., 1988; 7: 47. Исторический обзор, по­священный гепатотоксичности ингаляцион­ных анестетиков от хлороформа до современ­ных препаратов.

Covino В. G. et al. (eds). Effects of Anesthesia. American Physiological Society, 1985. Сборник статей, посвященных механизму действия анестетиков на молекулярном уровне и их влиянию на кровообращение и дыхание.

Eger E. I. Nitrous oxide, 2nd ed. Elsevier, 1984.

Eger E. I. New inhaled anesthetics. Anesthesiology, 1994; 80: 906. Прекрасный обзор клинической фармакологии десфлюрана и севофлюрана.

Hans-Joachim P. Isofluran and coronary hemodyna-mics. Anesthesiology, 1989; 71: 960. Обзор, по­священный противоречивой проблеме обкра­дывания коронарного кровотока.

Lowe H. J., Ernst E. A. The Quantitative Practice of Anesthesia: Use of The Closed Circuit. Williams & Wilkins, 1981. Проведение анестезии по зак­рытому контуру; описана модель "квадратный корень времени".

Marshall B. E., Longnecker D. E. General anesthetics. Chapter 14 In: Goodman and Gilman's The Pharmacological Basis of Therapeutics, 8th ed. Gilman A. G. et al. (eds). Pergamon, 1990.

Saidman L. J. The role of desflurane in the practice of anesthesia. (Editorial.) Anesthesiology, 1991; 74; 399. Этот номер журнала содержит результа­ты ранних исследований, посвященных фар­макологии десфлюрана.

Stoelting R. К. Pharmacology and Physiology in Anesthetic Practice, 2nd ed. Lippinscott, 1991. Глава, посвященная ингаляционным анесте-тикам,— одна из лучших дискуссионных работ на эту тему.

Tanelian D. L. et al. The role of the GABAA receptor/ chlorid channel complex in anesthesia. Anes­thesiology, 1993; 78: 757-776. Обзорная статья о современных теориях действия анестетиков и рецепторах гамма-аминомасляной кислоты.

Tinker J. H. Clinical physiology of desflurane. Anesth & Analg, 1992; 75: 1-54. Приложение к Anesth & Analg содержит 7 статей об отличиях десфлюрана от изофлюрана, влиянии дес­флюрана на ЦНС и применении его в амбула­торной хирургии.


 

Глава 8 Неингаляционные анестетики

Общая анестезия достигается не только с помо­щью ингаляционных анестетиков. Различные пре­параты, назначаемые внутрь, внутримышечно и внутривенно, вызывают анестезию или потенци­руют ее. Седативные средства для премедикации, которым посвящен "Случай из практики", приве­денный в настоящей главе, назначают внутрь или внутримышечно. У взрослых применяют внутри­венную индукцию анестезии. Даже поддержание общей анестезии можно осуществить с помощью методики тотальной внутривенной анестезии (TBBA, см. "Случай из практики", гл. 46). Данная глава начинается с обзора принципов фармакоки-нетики и фармакодинамики в приложении к рас­сматриваемой группе препаратов. Затем проводит­ся клиническая фармакология отдельных групп: барбитуратов, бензодиазепинов, опиоидов, кета-мина, этомидата, пропофола и дроперидола.

Фармакологические принципы

Фармакокинетика

Как уже было отмечено выше в гл. 7, фармакокине-тикой называется учение о взаимоотношениях между дозой, концентрацией в тканях и продолжи­тельностью действия лекарственного средства. Иными словами, фармакокинетика описывает, что организм делает с препаратом. Фармакокинетика определяется четырьмя параметрами: абсорбцией, распределением, биотрансформацией и экскрецией. Элиминация включает удаление пре­парата путем биотрансформации и экскреции. Клиренсмера скорости элиминации.

Абсорбция

Лекарственное средство может попасть в систем­ный кровоток несколькими путями: при назначе­нии внутрь, сублингвально, ректально, через лег­кие, чрескожно, подкожно, внутримышечно и внутривенно. Абсорбция — это процесс, в ходе ко­торого лекарственный препарат из места введения поступает в системный кровоток. На абсорбцию влияют физические свойства препарата (раствори­мость, рКа и концентрация) и характеристики мес­та абсорбции (перфузия, рН и площадь поверх­ности). Следует отличать абсорбцию от биодоступности, которая представляет собой фракцию неизмененного вещества в плазме крови относительно исходной дозы препарата. Напри­мер, нитроглицерин хорошо абсорбируется через ЖКТ, но при приеме внутрь имеет низкую биодос­тупность, потому что подвергается интенсивному метаболизму в печени (так называемый эффект первого прохождения).

Назначение препарата внутрь удобно, эконо­мично и позволяет достаточно точно его дозиро­вать. Тем не менее на поступление препарата в сис­темный кровоток влияют возможность контакта с больным, эффект первого прохождения, рН же­лудка, секреторная и моторная функции ЖКТ, пища, другие лекарственные средства.

Абсорбируется преимущественно неионизиро­ванная фракция препарата. Следовательно, препа­раты-кислоты лучше всасываются в кислой среде (Кис- + H+ → КисН), препараты-основания — в щелочной (ЩН+ → H+ + Щ).

Кровь из сосудов полости рта дренируется не­посредственно в верхнюю полую вену, поэтому при сублингвальном и буккальном путях введе­ния препараты поступают в системный кровоток, минуя печень. Ректальный путь — альтернатива приему внутрь при невозможности контакта с па­циентом (например, у детей) или при физической невозможности такого приема. Венозная кровь из прямой кишки поступает в нижнюю полую вену, минуя печень, поэтому при ректальном пути вве­дения биодоступность выше, чем при приеме внутрь. При ректальном введении нельзя быть уверенным в точности дозировки; кроме того, мно­гие препараты раздражают слизистую оболочку прямой кишки. Абсорбция ингаляционных анесте­тиков обсуждается в гл. 7.

К преимуществам чрескожного введения отно­сятся длительная непрерывная абсорбция, возможность использования незначительных доз препара­та. Роговой слой служит эффективной преградой для большинства соединений, за исключением низкомоле­кулярных жирорастворимых препаратов (напри­мер, клонидин, нитроглицерин, скополамин).

Наконец, препараты вводят парентерально, т. е. подкожно (п/к), внутримышечно (в/м) и внутривенно (в/в). Абсорбция препарата при под­кожном и внутримышечном введении определяет­ся диффузией из места инъекции в кровь. Ско­рость диффузии зависит от местного кровотока и среды-переносчика (растворы абсорбируются бы­стрее, чем суспензии). Некоторые препараты мо­гут вызывать боль при введении и некроз тканей. При внутривенной инъекции препарат полностью поступает в системный кровоток.

Распределение

Распределение — ключевой параметр фармакоки-нетики, определяющий концентрацию препарата в органе-мишени. Распределение лекарственного средства зависит от перфузии органа, связывания препарата с белками и его жирорастворимости.

После абсорбции лекарственное средство по­ступает в системный кровоток. Органы с высокой перфузией (группа хорошо васкуляризованных тканей) поглощают диспропорционально большее количество лекарственных средств, чем органы с низкой перфузией (мышцы, жир и слабо васкуля-ризованные ткани). Поэтому, несмотря на относи­тельно небольшую массу, хорошо васкуляризован-ные ткани поглощают значительное количество препарата (табл. 8-1).

Пока лекарственное средство связано с белком плазмы, оно не доступно для поглощения органом вне зависимости от интенсивности кровотока. Аль­бумин связывает главным образом препараты-кис­лоты (например, барбитураты), в то время как α1-гликопротеин — препараты-основания (напри­мер, местные анестетики). Если концентрация бел­ков плазмы снижена или места связывания на них заняты (например, другими лекарственными сред­ствами), то количество доступного для поглощения тканью свободного препарата увеличивается. Бо­лезни печени и почек, хроническая сердечная недо­статочность и злокачественные новообразования снижают выработку альбумина. Травма (включая хирургическую операцию), инфекции, инфаркт ми­окарда и хронические болевые синдромы — все это увеличивает выработку α1-гликопротеина.

Доступность препарата для органа еще не га­рантирует поглощения его этим органом. Напри­мер, поступление ионизированных препаратов в ЦНС резко ограничено гематоэнцефалическим барьером, который образован плотными контакта­ми перикапиллярных глиальных клеток и эндоте-лиальных клеток. Жирорастворимые неионизиро­ванные молекулы свободно проходят через липидные мембраны. Другие факторы, такие как размер молекулы и поглощение препарата в лег­ких, также влияют на распределение.

После того как в ходе начального распределения насыщаются хорошо васкуляризованные ткани, большая масса слабо васкуляризованных тканей продолжает поглощать препарат из кровотока. Ког­да концентрация препарата в плазме значительно снижается, некоторое количество его покидает хо­рошо васкуляризованные ткани и поступает в кро­воток, чтобы поддержать равновесие. Это пере­распределение из хорошо васкуляризованных тканей приводит к прекращению действия многих анесте-тиков. Например, пробуждение после анестезии ти-опенталом обусловлено не метаболизмом или экскре­цией, а перераспределением препарата из головного мозга в мышцы. Отсюда следует логический вывод: если насытить препаратом слабо васкуляризован­ные ткани (например, с помощью повторных введе­ний), то перераспределения не будет и окончание эффекта препарата станет определяться элимина­цией. Поэтому препараты короткого действия, та­кие как фентанил и тиопентал, после повторных введений или после введения большой однократной дозы действуют значительно дольше.

Кажущийся объем, в котором распределено ле­карственное средство, называется объемом распре­деления (V d, от англ, volume of distribution). Объем распределения равен частному от деления дозы препарата на концентрацию в плазме:

Vd = Доза/Концентрация.

 

ТАБЛИЦА 8-1. Группы тканей: состав, доля массы тела, доля сердечного выброса

Группа тканей Состав Доля массы тела, % Доля сердечного выброса, %
Хорошо васкуляризованные Мозг, сердце, печень, почки, эндокринные железы    
Мышцы Мышцы, кожа    
Жир Жир    
Слабо васкуляризованные Кости, связки, хрящ   О

Вычисления осложняются необходимостью учи­тывать влияние элиминации и перераспределе­ния. Низкий объем распределения указывает на то, что препарат распределяется главным образом в кровь (при массе 70 кг Vd панкурония равен 10 л). К причинам низкого объема распределения относят высокую степень ионизации или связыва­ния с белками. В то же время объем распределе­ния может превышать объем общей воды организ­ма (приблизительно 40 л). Это объясняется высокой растворимостью или лучшим связывани­ем препарата в тканях по сравнению с плазмой (например, Vd фентанила равен 350 л). Итак, объем распределения не представляет собой реаль­ный объем, а отражает объем плазмы, который был бы необходим для распределения дозы препа­рата в измеренной концентрации.

Биотрансформация

Биотрансформация — это химическое превраще­ние лекарственного вещества в ходе метаболизма. Конечные продукты метаболизма обычно (но не всегда) неактивные и водорастворимые. Послед­нее свойство обеспечивает экскрецию через поч­ки. Главным органом биотрансформации являет­ся печень.

Метаболическую биотрансформацию подразде­ляют на реакции I и II фазы. Реакции I фазы преставляют собой окисление, восстановление или гидролиз, в ходе которых молекула лекарственного средства становится более полярной. В реакциях II фазы, или реакциях конъюгации, к молекуле ле­карственного средства (или его метаболита, образо­вавшегося в результате реакции I фазы) присоеди­няется молекула эндогенного вещества, например глюкуроновой кислоты, в результате чего образует­ся более полярный метаболит, легко выводимый с мочой. В подавляющем большинстве случаев конъюгация следует за реакцией I фазы, но иногда метаболическая трансформация ограничивается исключительно реакцией I фазы или же конъюга­ция предшествует реакции I фазы.

Печеночный клиренс — это скорость элимина­ции лекарственного вещества в результате его био­трансформации в печени. Точнее, клиренс — это объем плазмы, очищенный от препарата за едини­цу времени; клиренс измеряют в мл/мин. Печеноч­ный клиренс зависит от печеночного кровотока и фракции препарата, поглощаемого из крови пече­нью (отношение печеночной экстракции). С одной стороны, препараты, которые поглощаются пече­нью в значительной степени, имеют высокое отно­шение печеночной экстракции и их клиренс пропор­ционален печеночному кровотоку. С другой стороны, препараты с низким отношением пече­ночной экстракции поглощаются печенью незначи­тельно и их клиренс ограничен емкостью фермент-них систем печени. При болезнях печени на фармакокинетику лекарственного средства влияет не только отношение печеночной экстракции, но также степень снижения печеночного кровотока и дисфункции гепатоцитов.

Экскреция

Главным органом экскреции являются почки. Ле­карственные вещества, не связанные с белками плазмы, свободно проходят через клубочковый фильтр. Неионизированная фракция препарата реабсорбируется в почечных канальцах, а ионизи­рованная — выделяется с мочой. Таким образом, изменение рН мочи влияет на почечную экскре­цию. Почечный клиренс — это скорость элимина­ции препарата путем почечной экскреции. Почеч­ная недостаточность влияет на фармакокинетику многих лекарственных средств, изменяя степень связывания с белками, объем распределения и по­чечный клиренс.

Исключительно от экскреции с желчью зависит элиминация относительно небольшого количества лекарственных средств, потому что в кишечнике эти средства большей частью реабсорбируются и в конце концов выводятся с мочой. Отсроченные токсические реакции некоторых препаратов (на­пример, фентанила) объясняются именно энтеро-гепатической рециркуляцией.

Элиминация ингаляционных анестетиков обес­печивается легкими (гл. 7).

Модели камер

Модели камер представляют собой упрощенную схему, позволяющую охарактеризовать распре­деление и элиминацию лекарственных средств в организме. Камерой называют группу тканей, об­ладающих сходными фармакокинетическими ха­рактеристиками. Например, плазма и хорошо вас-куляризованные ткани — это центральная камера, в то время как мышцы, жир и кожа — перифери­ческая камера. Следует иметь в виду, что под ка­мерами понимают воображаемые пространства, а не реальные анатомические структуры.

Двухкамерная модель хорошо коррелирует с распределением и элиминацией многих лекар­ственных средств (рис. 8-1). После в/в струйного введения концентрация препарата в плазме мгно­венно возрастает. Начальное быстрое снижение концентрации препарата в плазме, называемое фа­зой распределения, или альфа(α)-фазой, соответ­ствует перераспределению препарата из централь­ной камеры в периферическую. После того как распределение замедляется, элиминация из цент­ральной камеры вызывает длительное, но менее крутое снижение концентрации препарата в плаз­ме, что носит название фазы элиминации, или бета(β)-фазы. Период полусуществования препара­та в фазе элиминации прямо пропорционален объему распределения и обратно пропорционален клиренсу. Кривые концентрации многих лекарственных средств лучше описывать с помощью трехкамер-ной модели, где оперируют одной центральной ка­мерой и двумя периферическими. Концентрация лекарственного вещества в плазме после в/в струйного введения описывается следующим трех-экспоненциальным уравнением:

Cp(t) = Ae-at + Be-βt + Ce-γt

где Cp(t) — концентрация препарата в плазме в мо­мент времени t; A, В и С — фракционные коэффици­енты, которые указывают на относительный вклад каждой из трех констант периодов полусуществова­ния препарата (а соответствует периоду полусуще­ствования в фазе быстрого распределения, β — в фазе медленного распределения, γ — в фазе окончатель­ной элиминации). Следовательно, концентрация препарата в плазме определяется шестью фармако-кинетическими параметрами, и не все из них являются периодами полусуществования, как часто ошибоч­но считают.

Рис. 8-1. Двухкамерная модель описывает фазу распре­деления (α-фазу) и фазу элиминации (β-фазу). Во время фазы распределения лекарственный препарат поступает из центральной камеры в периферическую. Фаза элими­нации состоит в метаболизме и экскреции препарата

Фракционные коэффициенты так же важны для расчета продолжительности действия препарата, как периоды полусуществования. Напри­мер, периоды полусуществования в фазах распреде­ления и элиминации для лекарственного средства х могут быть больше по сравнению с таковыми пре­парата у, но концентрация препарата х в плазме мо­жет снижаться значительно быстрее только вслед­ствие того, что его фракционный коэффициент распределения (А) больше. Иными словами, если распределение, а не элиминация играет основную роль в снижении концентрации препарата, то даже при длительных периодах полусуществования кон­центрация препарата в сыворотке будет быстро уменьшаться. Следовательно, продолжительность действия препарата нельзя рассчитать, зная только периоды полу существования.

Скорость распределения и биотрансформации принято описывать в терминах кинетики первого по­рядка. Другими словами, в единицу времени распре­деляется или подвергается метаболизму постоянная фракция (доля) препарата вне зависимости от кон­центрации препарата в плазме. Например, каждый час подвергается биотрансформации 10 % препарата вне зависимости от того, будет ли его концентрация в плазме равна 10 мкг/мл или 100 мкг/мл. Если кон­центрация препарата превышает возможности биотрансформации, то в единицу времени подверга­ется метаболизму одинаковое количество препарата (кинетика нулевого порядка). Можно привести ана­логичный первому пример: каждый час будет под­вергаться метаболизму 500 мкг препарата вне зави­симости от того, будет ли его концентрация в плазме равна 10 мкг/мл или 100 мкг/мл. Метаболизм алко­голя описывается кинетикой нулевого порядка.

Фармакодинамика

Фармакодинамика — это наука о действии препа­рата на организм, включая токсические реакции (т. е. о том, как лекарственный препарат влияет на организм). Действие препарата на организм харак­теризуется эффективностью, мощностью и тера­певтической широтой. Фармакодинамика также изучает механизмы действия, соотношение между структурой и активностью и межлекарственные взаимодействия. Изучение рецепторов лекар­ственных средств и графиков "доза-эффект" об­легчает понимание фармакодинамики.

Кривые "доза-эффект"

Кривые "доза-эффект" отражают зависимость между дозой препарата и фармакологическим эффектом. Дозу препарата (или его устойчивую кон­центрацию в плазме) откладывают по оси абсцисс (т. е. по оси х) в линейном (рис. 8-2А) или логариф­мическом (рис. 8-2Б) выражении. Величину фар­макологического эффекта откладывают по оси ор­динат (т. е. по оси у) в виде абсолютных единиц (см. рис. 8-2A) или доли максимального эффекта (см. рис. 8-2Б). Крутизна наклона кривой свиде­тельствует о мощности препарата. Эффективность определяется максимальным эффектом препарата. Наклон кривой отражает связывание препарата с рецептором. Изучив зависимость фармакологи­ческого эффекта от концентрации препарата в сы­воротке, можно нейтрализовать влияние фармако-кинетики на кривые "доза-эффект"

Рис. 8-2. Форма кривой "доза-эффект" зависит от линей­ного (А) или логарифмического (Б) отображения дозы препарата или его устойчивой концентрации в сыворотке

Медиана эффективной дозы (ЭД50) — это доза препарата, которая вызывает ожидаемый эффект у 50 % популяции. Следует отметить, что ЭД50 не яв­ляется дозой, способной вызвать половину макси­мального эффекта. Для ингаляционных анестетиков ЭД50 соответствует минимальной альвеолярной концентрации (1 МАК, см. гл. 7). Медиана леталь­ной дозы (ЛД50) — это доза препарата, которая при­водит к смерти 50 % популяции. Терапевтическим индексом называют отношение медианы летальной дозы к медиане эффективной дозы (ЛД50: ЭД50).



Поделиться:


Последнее изменение этой страницы: 2016-04-20; просмотров: 548; Нарушение авторского права страницы; Мы поможем в написании вашей работы!

infopedia.su Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Обратная связь - 52.15.239.254 (0.011 с.)