Заглавная страница Избранные статьи Случайная статья Познавательные статьи Новые добавления Обратная связь FAQ Написать работу КАТЕГОРИИ: АрхеологияБиология Генетика География Информатика История Логика Маркетинг Математика Менеджмент Механика Педагогика Религия Социология Технологии Физика Философия Финансы Химия Экология ТОП 10 на сайте Приготовление дезинфицирующих растворов различной концентрацииТехника нижней прямой подачи мяча. Франко-прусская война (причины и последствия) Организация работы процедурного кабинета Смысловое и механическое запоминание, их место и роль в усвоении знаний Коммуникативные барьеры и пути их преодоления Обработка изделий медицинского назначения многократного применения Образцы текста публицистического стиля Четыре типа изменения баланса Задачи с ответами для Всероссийской олимпиады по праву Мы поможем в написании ваших работ! ЗНАЕТЕ ЛИ ВЫ?
Влияние общества на человека
Приготовление дезинфицирующих растворов различной концентрации Практические работы по географии для 6 класса Организация работы процедурного кабинета Изменения в неживой природе осенью Уборка процедурного кабинета Сольфеджио. Все правила по сольфеджио Балочные системы. Определение реакций опор и моментов защемления |
Электробезопасность Риск электротравмыСодержание книги
Поиск на нашем сайте
Применение медицинского электрооборудования влечет за собой риск электротравмы как для больного, так и для медицинского персонала. Следовательно, анестезиолог должен владеть основными понятиями в области электробезопасности. Контакт тела человека с двумя токопроводящи-ми предметами (проводниками), между которыми существует разница потенциалов, приводит к замыканию электрической цепи (контура) и, как следствие, к поражению электрическим током. Обычно воздействию тока в НО или 240 В подвергается лишь зона контакта с проводником, а электрический контур замыкается через заземленный контакт. Например, человеку, имеющему непосредственный контакт с заземлением, необходим лишь дополнительный контакт с проводником под током, чтобы контур замкнулся и была получена электротравма. Находящимся под напряжением проводником может служить, например, кожух монитора при повреждении изоляции. Замкнутый электрический контур будет состоять из силовой линии (которая заземлена через силовой трансформатор), тела больного и земли (рис. 2-6). Физиологические эффекты электротравмы зависят от места прохождения разряда в теле человека, продолжительности воздействия, частоты и амплитуды (точнее — от плотности тока) электрического разряда. Ток утечки (рассеяния) присутствует во всех электроприборах как результат емкостных контактов, индукции или дефектов изоляции. Ток может возникнуть в результате емкостного контакта между двумя проводниками (например, электрическая цепь между прибором и его кожухом) без непосредственного физического контакта. Некоторые мониторы имеют дублированную изоляцию для уменьшения емкостного контакта. Техническое решение в других моделях мониторов состоит в подключении к заземлению с низким импедансом (безопасно заземленный контур), так что при случайном контакте человека с кожухом ток "отводится". Величина тока утечки в норме незначительна и не превышает 1 мА (миллиампер), что существенно ниже порогового значения для фибрил-ляции — 100 мА. Тем не менее, если ток каким-либо образом шунтирует кожу, обладающую высоким электрическим сопротивлением, и проходит непосредственно в области сердца (микрошок), то он может вызвать летальный исход даже при силе 100 мкА (микроампер). Значение максимально допустимого тока утечки в электроприборах операционной не должно превышать 10 мкА. Катетеры при инвазивном мониторинге и элект-рокардиостимуляторы обеспечивают контакт проводника с эндокардом. Известно, что кровь и электролитные растворы являются проводниками тока. Точные характеристики тока, необходимые для возникновения фибрилляции, зависят от совпадения по времени между воздействием электричества и уязвимым периодом реполяризации сердца (зубец T на электрокардиограмме). Даже небольшой разницы потенциалов между двумя заземленными электророзетками в операционной достаточно для возникновения микроэлектротравмы. Защита от электротравмы В подавляющем большинстве случаев причиной электротравм является замыкание контура "земля-тело-земля" (см. рис. 2-6). Подобной ситуации можно избежать, если все приборы в операционной будут заземлены, а больной — нет. В то время как можно избежать прямого, непосредственного заземления больного, его полная электроизоляция в ходе операции неосуществима. Вместо этого через специальный изолирующий трансформатор изолируют от заземления силовое обеспечение операционной (рис. 2-7). В отличие от силового трансформатора вторичная обмотка изолирующего трансформатора не имеет заземления и обеспечивает напряжение в двух незаземленных силовых контурах для подключения электрооборудования операционной. Кожухи приборов — но не электрические контуры внутри них — заземляются через длинный штекер трехфазной штепсельной вилки (так называемое безопасное заземление). Случайный контакт находящегося под напряжением проводника с заземленным больным не приводит к замыканию контура через тело. Это обусловлено тем, что при использовании изолирующего трансформатора контур не может замыкаться через вторичную обмотку (рис. 2-8). Конечно же, если произойдет контакт между обеими силовыми линиями, то контур замкнется и электротравма станет возможной. Более того, если одна из двух линий при повреждении будет иметь контакт с землей, контакт заземленного больного с другой линией приведет к замыканию цепи через его тело. Чтобы снизить риск такого сочетанного повреждения электрооборудования, применяют монитор изоляции электролинии, который измеряет силу тока между изолированным источником тока и заземлением (рис. 2-9). По существу, монитор изоляции электролинии сигнализирует о степени изоляции между двумя силовыми линиями и заземлением и предсказывает силу тока, который может возникнуть при коротком замыкании. Тревога срабатывает, если сила тока возрастает выше пороговой (обычно 2 или 5 мА), но линия не прерывается до тех пор, пока не сработает прерыватель контура, сопряженный с утечкой тока через заземление. Последний обычно помещается за пределами операционной, поскольку прерывание работы систем жизнеобеспечения гораздо опаснее риска электротравмы. Тревога на мониторе изоляции электролинии означает, что происходит частичная утечка напряжения через заземление. Другими словами, монитор изоляции линии сигнализирует о существовании одного повреждения (между силовой линией и землей), в то время как для электротравмы необходимо два повреждения. Если сработала тревога, последний по времени аппарат, включенный в сеть, нужно выключить и пользоваться им только после проверки и ремонта. Рис. 2-6. Типичные условия возникновения электротравмы. Человек, случайно имеющий контакт с заземлением, одновременно контактирует и с находящимся под напряжением проводником тока: обычно это происходит при неисправности электроприбора. Тело человека превращается в проводник электрического тока. Образуется замкнутый электрический контур, который начинается со вторичной обмотки силового трансформатора (источник напряжения), затем следуют проводник тока, тело человека и контакт его с заземлением, земля, нейтральный заземляющий стержень и возврат в трансформатор через нейтральный полюс (заземление). (Из: Bruner J., Leonard P. F. Electricity, Safety, and the Patient. Mosby Year Book, 1989. Воспроизведено с изменениями, с разрешения.) Рис. 2-8. Защита от электротравмы с помощью изолирующего трансформатора. Даже если человек находится в контакте с заземлением, случайный контакт с проводником изолирующего контура не будет сопровождаться замыканием цепи через его тело. Это обусловлено тем, что при одновременном контакте с двумя независимыми источниками напряжения контур не замыкается. (Из: Вruner J., Leonard P. F. Electricity, Safety, and the Patient. Mosby Year Book, 1989. Воспроизведено с изменениями, с разрешения.) Даже изоляция силового контура не обеспечивает полной защиты от слабых токов, способных вызвать микрошок и фибрилляцию желудочков. Более того, монитор изоляции электролинии не в состоянии сигнализировать о всех возможных повреждениях, например о повреждении безопасного провода заземления внутри какого-либо аппарата. Требования по изоляции силовых систем в операционных, несмотря на их несомненную пользу, были исключены из Национального электрического кодекса (National Electrical Code) в 1984 г., и при оборудовании новых или реконструкции старых операционных этим правилам безопасности следовать не обязательно. В современной аппаратуре используются технические решения, которые снижают риск микрошока. К ним относят двойную изоляцию кожухов и рам, незаземленные батарейные источники питания, изоляцию больного от заземленной аппаратуры с помощью трансформаторов или оптических контактов. Хирургическая диатермия Электрохирургические инструменты работают от сверхвысокочастотного генератора, ток проходит через маленький активный электрод (каутер), больного и широкий плоский электрод (заземляющая прокладка, возвратный электрод). Прикосновение каутера к тканям вызывает, в зависимости от формы импульса, коагуляцию или, наоборот, рассечение тканей. Фибрилляции желудочков не возникает, потому что в электрохирургических приборах используют ток сверхвысокой частоты — 0,1-3 млн Гц, в то время как частота тока в электросети составляет, например, 50-60 Гц. Большая поверхность соприкосновения низкоимпедансного возвратного электрода с тканями позволяет избежать ожогов в области контакта вследствие низкой плотности тока (понятие "выход тока" технически некорректно, так как ток скорее переменный, чем постоянный, поэтому правильнее использовать термин "область контакта"). Высокая мощность хирургического каутера (до 400 Вт) может приводить к индукции зарядов на кабелях мониторов, что вызывает электрическую интерференцию. Нарушение функции возвратного электрода может быть вызвано его отсоединением от прибора, плохим контактом с телом или недостаточным количеством геля. В подобных ситуациях ток будет искать другие места выхода (например, прокладки электрокардиографа, металлические части операционного стола), что может привести к электроожогу (рис. 2-10). Профилактика диатермических ожогов заключается в правильном наложении возвратного электрода (вне костных выступов) и избежании заземления больного. Если ток проходит через область сердца, то могут возникнуть перебои в работе электрокардиостимулятора. Чтобы не допустить подобного осложнения, возвратный электрод располагают как можно ближе к операционному полю и как можно дальше от сердца. Рис. 2-9. Панель монитора изоляции электролинии. (С разрешения Ohio Medical Products.) Современные электрохирургические приборы не имеют изоляции, такой как у силового обеспечения операционной. Поскольку этот уровень защиты распространяется не только на сами приборы, но pi на их собственные изолированные силовые линии, нарушения в сети могут и не отражаться на мониторе изоляции электролинии. Хотя в некоторых электрохирургических приборах путем измерения импеданса удается выявить недостаточную степень контакта между возвратным электродом и телом, в большинстве старых моделей сигнал тревоги срабатывает только при отсоединении электрода от аппарата. При использовании биполярных электродов ток распространяется только на несколько миллиметров, что делает ненужным использование возвратного электрода. Электрохирургические приборы могут нарушать функционирование электрокардиостимулятора и регистрацию ЭКГ. Следовательно, во время работы хирургической электроаппаратуры необходимо тщательно наблюдать за пульсом и регулярно проводить аускультацию сердца.
|
||||
Последнее изменение этой страницы: 2016-04-20; просмотров: 245; Нарушение авторского права страницы; Мы поможем в написании вашей работы! infopedia.su Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Обратная связь - 18.221.234.179 (0.01 с.) |