Параллельные регистры (регистры памяти) 


Мы поможем в написании ваших работ!



ЗНАЕТЕ ЛИ ВЫ?

Параллельные регистры (регистры памяти)

Поиск

Запись кода в параллельные регистры осуществляется параллельным кодом, то есть во все разряды регистра одновременно. Их функция сводится только к приёму, хранению и передаче информации. В связи с этим параллельные регистры называют регистрами памяти.

Параллельный N-разрядный состоит из N триггеров, объединённых общими цепями управления.

В качестве примера на рисунке 54,а приведена схема 4-разрядного параллельного регистра, построенного на RS-триггерах D5…D8. Элементы D1…D4 образуют цепь управления записью, а элементы D9…D12 — цепь управления чтением.

Рисунок 54 Функциональная схема а) и УГО б) параллельного регистра.

 

Перед записью информации все триггеры регистра устанавливают в состояние «0» путём подачи импульса «1» на их R-входы.

Записываемая информация подаётся на входы DI1…DI4. Для записи информации подаётся импульс «Зп», открывающий входные элементы «И». Код входного числа записывается в регистр. По окончании импульса «Зп» элементы D1…D4 закрываются, а информация, записанная в регистр, сохраняется несмотря на то, что входная информация может изменяться.

Для считывания информации подают сигнал «1» на вход «Чт». По этому сигналу на выходные шины регистра на время действия сигнала передаётся код числа, записанный в регистр. По окончанию операции чтения выходные ключи закрываются, а информация, записанная в регистр, сохраняется. То есть возможно многократное считывание информации. Условное графическое обозначение параллельного регистра приведено на рисунке 54,б.

Регистры сдвига

Регистры сдвига представляют собой цепочку последовательно включённых D-триггеров или RS- и JK-триггеров, включённых в режим D-триггера. Появление импульса на тактовом входе регистра сдвига вызывает перемещение записанной в нём информации на один разряд вправо или влево. Как и другие регистры, регистры сдвига используются для записи, хранения и выдачи информации, но основным их назначением является преобразование последовательного кода в параллельный или параллельного в последовательный.

Схема 4-разрядного регистра сдвига приведена на рисунке 55. Схема работает следующим образом. Благодаря тому, что выход предыдущего разряда соединён со входом «D» последующего, каждый тактовый импульс устанавливает последующий триггер в состояние, в котором до этого находился предыдущий. Так осуществляется сдвиг информации вправо.

Рисунок 54 4-разрядный регистр сдвига

 

Вход «D» первого триггера служит для приёма в регистр входной информации DI в виде последовательного кода. С каждым тактовым импульсом на этот вход должен подаваться код нового разряда входной информации.

Запись параллельного кода информации может быть произведена через нетактируемые установочные входы триггеров (на рисунке 55 не показаны).

С выхода «Q4» последнего триггера снимается последовательный выходной код. Код на этом выходе регистра появляется с задержкой относительно входного последовательного кода на число периодов тактовых импульсов, равное числу разрядов регистра.

Параллельный выходной код можно снять с выходов Q1…Q4 всех триггеров регистра сдвига, снабдив их выходными ключами, подобными выходным ключам параллельного регистра (См. рисунок 54,а).

Реверсивные регистры сдвига

Реверсивные регистры сдвига обеспечивают возможность сдвига информации как вправо, так и влево. Они имеют специальный вход управления направлением сдвига.

Поскольку транзисторы и логические элементы способны передавать сигналы только в одном направлении с входа на выход (слева направо), то, для сдвига информации влево, необходимо информацию с выхода последующих триггеров по специально созданным цепям подавать на входы предыдущих триггеров и записывать их следующим тактовым сигналом. Это эквивалентно сдвигу информации влево.

Фрагмент функциональной схемы реверсивного регистра сдвига приведён на рисунке 56.

Рисунок 56 Реверсивный регистр сдвига

 

Если сигнал на входе направления сдвига N=1, то потенциал на входе «Di» триггера определяется выходом Q триггера, стоящего слева от него. Если N=0, то выходом триггера, стоящего справа.

Таким образом, при N=1 тактовые импульсы производят сдвиг информации вправо, а при N=0 –— сдвиг информации влево.

Счётчики импульсов

Требования, предъявляемые к счётчикам

В устройствах цифровой обработки информации измеряемый параметр (угол поворота, скорость, давление и т. п.) преобразуются в импульсы напряжения, число которых в соответствующем масштабе характеризует значение данного параметра. Эти импульсы подсчитываются счётчиками импульсов и выражаются в виде цифр.

Основными показателями счётчиков являются ёмкость и быстродействие.

Ёмкость, численно равная КСЧ, характеризует число импульсов, доступное счёту за один цикл. Как уже было показано выше, ёмкость определяется количеством разрядов счётчика.

Быстродействие или максимально возможная скорость работы оценивается двумя параметрами:

Разрешающая способность tраз.сч — минимальное время между двумя входными сигналами, в течение которого ещё не возникают сбои в работе счётчика. Величина, обратная разрешающей способности, называется максимальной частотой счёта f max. f max определяет количество импульсов, которое может подсчитать счётчик за 1 сек.

f max = 1/ tраз.сч

– Время установки кода счётчика tуст — это время между моментом прихода входного сигнала и переходом счётчика в новое устойчивое состояние.

Для удовлетворения потребностей разработчиков цифровых электронных устройств различного назначения разработаны интегральные микросхемы счётчиков с широким спектром параметров. Всё многообразие счётчиков можно классифицировать по следующим признакам.

1 По направлению счёта:

• Суммирующие,

• Вычитающие,

• Реверсивные.

2 По коэффициенту счёта:

• Двоичные,

• Двоично-десятичные (декадные),

• С постоянным произвольным коэффициентом счёта,

• С переменным коэффициентом счёта.

3 По способу организации внутренних связей:

• С последовательным переносом,

• С параллельным переносом,

• С комбинированным переносом,

• Кольцевые.

Классификационные признаки независимы и могут встречаться в разных сочетаниях. Например, суммирующие счётчики могут быть как с последовательным, так и с параллельным переносом и могут иметь двоичный или десятичный коэффициент счёта.

Суммирующие счётчики

Простейшим счётчиком является Т-триггер, считающий до 2-х, то есть осуществляющий счёт и хранение не более 2-х сигналов.

Счётчик, образованный цепочкой из n триггеров сможет подсчитать в двоичном коде 2n импульсов. Число n определяет количество разрядов двоичного числа, которое может быть записано в счётчик. Число 2n называется модулем или коэффициентом счёта:

KСЧ = 2n

Схема простейшего 4-х разрядного счётчика приведена на рисунке 60,а. Принцип работы счётчика проиллюстрирован временными диаграммами, приведёнными на рисунке 60,б.

Рисунок 60 Схема двоичного суммирующего счётчика а)

и временные диаграммы его работы б).

 

Первый разряд счётчика переключается с приходом каждого входного импульса, что соответствует алгоритму работы Т-триггера. На каждые два входных импульса Т-триггер формирует один выходной импульс.

Второй разряд переключается в состояние «1» после прихода каждого 2-го импульса.

Третий разряд — после прихода каждого 4-го импульса.

Четвёртый разряд — после прихода каждого 8-го импульса.

Таким образом, единичные значения сигналов на выходах триггеров регистра появляются с приходом 1, 2, 4, 8 импульсов, что соответствует весовым коэффициентам двоичного кода. Поэтому с выходов триггеров регистра можно прочитать параллельный двоичный код числа импульсов, поступивших на его вход. Например, после прихода 5 импульсов единичные значения установятся на выходах Q1 и Q3 (см. пунктирную линию на рисунке 60,б), что соответствует коду числа 5: 0101B. Аналогично, после прихода 13-и импульсов на выходах триггеров установится код 1101B.

Если число входных импульсов NВХ > KСЧ, то при NВХ=KСЧ происходит переполнение счётчика, после чего счётчик возвращается в нулевое состояние и повторяет цикл работы.

После каждого цикла счёта на выходе последнего триггера возникают перепады напряжения, то есть формируется один импульс. Это свойство определяет второе назначение счётчиков — деление числа входных импульсов.

Если входные сигналы периодичны и следуют с частотой fВХ, то частота fВЫХ:

fВЫХ = fВХ / KСЧ

В этом случае коэффициент счёта определяется как коэффициент деления и обозначается KДЕЛ.

У счётчика в режиме деления частоты используется сигнал только последнего триггера, а промежуточные состояния остальных триггеров не учитываются.

Всякий счётчик может быть использован как делитель частоты.



Поделиться:


Последнее изменение этой страницы: 2016-04-08; просмотров: 2507; Нарушение авторского права страницы; Мы поможем в написании вашей работы!

infopedia.su Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Обратная связь - 3.129.70.138 (0.011 с.)