Мы поможем в написании ваших работ!
ЗНАЕТЕ ЛИ ВЫ?
|
Первичное торможение в цнс. Пресинаптическое торможение и какова его природа.
Содержание книги
- Опишите механизм возникновения потенциала действия. Деполяризация мембраны, ее механизмы. Порог деполяризации.
- Закона длительности раздражения. Кривая гоорвега-вейса. Полезное время и хронаксия. Хронаксиметрия и ее клиническое значение. Закон градиента раздражения. Аккомодация ткани.
- Особенности распространяющегося и местного возбуждения Активные и пассивные сдвиги мембранного потенциала.
- Теория «скольжения» мышечного сокращения. Кризис теории «скольжения». Теория «вкручивания», объясняющая механизм мышечного сокращения.
- Физиологические особенности гладких мышц.
- Физиология синапса. Определение, классификация, структурно-функциональные компоненты синапсов. Структурно-функциональные особенности нервно-мышечного синапса.
- Механизм передачи возбуждения в синапсе
- Основные особенности передачи возбуждения в синапсах ЦНС.
- Особенности потенциала действия нервной клетки. Интегративная функция нейрона.
- Первичное торможение в цнс. Пресинаптическое торможение и какова его природа.
- Сегментарный и надсегментарный уровни вегетативной нервной системы. Физиологическая характеристика преганглионарных и постганглионарных нервных волокон вегетативной нервной системы.
- Рецепторная и рефлекторная функция ганглиев.
- Метасимпатическая нервная система
- Механизм саморегуляции выделения медиатора в синапсах вегетативной нервной системы
- Рефлекторная функция спинного мозга
- Проводниковая функция спинного мозга
- Спинальные механизмы регуляции мышечного тонуса и фазных движений.
- Клинически важные спинальные рефлексы
- Рефлекторная функция продолговатого мозга.
- Рефлекторная функция продолговатого мозга. Бульбарные механизмы поддержания позы человека.
- Структурно-функциональная организация и физиологические функции среднего мозга и моста (сенсорные, проводниковые, моторные, вегетативные, интегративные, рефлекторные).
- Современные представления о влиянии РФ.
- Структурно-функциональная организация лимбической системы. Ее роль в формировании мотиваций, эмоций, организации памяти. Участие лимбических структур в интегративной деятельности цнс.
- Проводниковый отдел и принципы его построения.
- Основные функции анализаторов
- Основные формы нарушения цветового восприятия.
- Механизм работы вестибулярного анализатора
- Внимание, его нейрофизиологические механизмы. Роль внимания в процессах запоминания и обучения.
- Нейроструктурные предпосылки мышления
- Механизмы долговременной памяти
- Функциональная асимметрия полушарий головного мозга и ее роль в реализации психических функций
- Механизмы возрастания минутного объёма дыхания при физической нагрузке. Причины развития дыхательного алкалоза при тяжёлой мышечной работе.
- Чем представлен дыхательный аппарат у человека? Респираторные и нереспираторные функции воздухопроводящих путей и легких.
- Перечислите этапы биомеханики вдоха. Назовите виды давления в грудной полости и их роль в биомеханике вдоха и выдоха?
- Специфические регуляторы дыхания: опишите зависимость минутного объёма дыхания от рН ликвора, рО2 в крови. Опыт Фредерика.
- Работа дыхательных мышц и её зависимость от сопротивления дыханию. Виды сопротивления. Что такое предел дыхания?
- Механизм спонтанного дыхания
- Периоды рефрактерности сердца
- Резус-фактор, физиологическая роль. Физиологические основы переливания крови. Основные правила переливания крови. Гемотрансфузионный шок.
- ФУС, обеспечивающая поддержание постоянства уровня питательных веществ в крови.
- Пищеварение в полости рта. Состав и пищеварительные свойства слюны. Регуляция секреторной функции слюнных желез.
- Пищеварение в желудке. Состав и пищеварительные свойства желудочного сока. Фазы желудочной секреции. Механизмы регуляции желудочной секреции.
- Состав и пищеварительное действие поджелудочного сока. Регуляция панкреатической секреции.
- Моторная функция желудка, тонкого и толстого кишечника. Физиологические особенности и значение .
- Механизмы всасывания. Виды всасывания. Виды транспорта веществ через мембрану. Особенности всасывания углеводов, белков, жиров.
- Участие почек в поддержании кислотно-основного равновесия крови.
- Строение нефрона. Кровообращение в почке, его особенности.
- Реабсорбция в почечных канальцах. Виды реабсорбции. Механизмы реабсорбции. Пороговые вещества. Регуляция реабсорбции.
- Температурное «ядро» и «оболочка». Методы измерения температуры тела. Количество тепловой энергии, вырабатываемой в сутки в организме теплокровного животного, механизмы её распределения в организме.
- Способы отдачи тепла (теплопроведение, конвекция, излучение, испарение). Внутренний и наружный потоки энергии. Регуляция теплоотдачи.
Постсинаптическое торможение – это основной вид первичного торможения. Его вызывает возбуждение вставочных нейронов и клеток Реншоу (афферентные нейроны тормозными не бывают). При этом торможении происходит гиперполяризация постсинаптической мембраны, в результате чего нейрон затормаживается (блокируется). Блокатором ГАМКергических рецепторов является бикукулин, а блокатором глициновых рецепторов – стрихнин, столбнячный токсин. Примерами постсинаптического торможения являются возвратное (аутогенное) торможение, реципрокное торможение, латеральное торможение и возвратное облегчение. Возвратное торможение. От альфа-мотонейрона отходит аксон к соответствующим мышечным волокнам. В начальном сегменте аксона от него отходит коллатераль, которая возвращается в ЦНС – она заканчивается на тормозном нейроне (клетке Реншоу) и активирует её, в результате чего клетка Реншоу вызывает торможение альфа-мотонейрона, который запустил всю эту цепочку. Таким образом, альфа-мотонейрон, активируясь, через систему тормозного нейрона сам себя тормозит. Реципрокное (reciprocus, лат. – взаимный) торможение. Сигнал (нервный импульс) от мышечного веретена скелетной мышцы через афферентный нейрон поступает в спинной мозг, где переключается на альфамотонейрон сгибателя и одновременно на вставочный тормозной нейрон, который тормозит активность альфа-мотонейрона разгибателя. Это торможение описал Н.Е.Введенский, а изучил Ч.Шеррингтон. Латеральное торможение. Суть этого торможения сводится к тому, что тормозная клетка формирует тормозные синапсы не только на активирующем её нейроне, но и на рядом расположенных, которые также затормаживаются. Например, фоторецептор, возбуждаясь, активирует биполярную клетку в сетчатке и одновременно активирует рядом расположенный тормозной нейрон, который блокирует проведение возбуждения от соседнего фоторецептора к ганглиозной клетке. Этим самым происходит «вытормаживание» информации в соседних участках. Таким способом создаются условия для чёткого видения предмета (две точки на сетчатке рассматриваются как две раздельные точки в том случае, если между ними есть невозбуждённые участки). Возвратное облегчение. Некоторые тормозные клетки (например, клетки Уилсона) имеют синаптические связи с аксонами других тормозных клеток. При возбуждении последних тормозятся сами тормозные клетки, которые в результате снижают своё тормозное действие на мотонейрон. Другими словами, происходит суммирование двух отрицательных воздействий, что приводит к «возвратному облегчению» влияния тормозного нейрона. Пресинаптическое торможение (Экклс, 1962) осуществляется путём вытормаживания какого-то определённого пути, идущего к данному нейрону. Например, к нейрону подходят 10 аксонов и к каждому из этих аксонов подходят аксоны тормозных нейронов. Они могут тормозить проведение соответственно по каждому из аксонов в отдельности. Пресинаптическое торможение чаще развивается у окончаний афферентных соматических и вегетативных нервов. Морфологической основой являются аксо-аксональные синапсы. При этом торможение развивается в связи с уменьшением или полной блокадой выброса медиатора в синаптическую щель того синапса, который передаёт возбуждение. Таким образом, торможение передачи импульсов происходит благодаря изменению свойств его пресинаптической мембраны. В аксоаксональном синапсе выделяется ГАМК. В результате взаимодействия с рецепторами на постсинаптической мембране открываются хлорные каналы. Движение ионов хлора будет зависеть от мембранного потенциала. Если ионы хлора движутся наружу по электрическому градиенту, то развивается деполяризация. Если же они движутся внутрь по концентрационному градиенту, то возникает гиперполяризация. Это вызывает уменьшение амплитуды или полное угнетение потенциала действия, приходящего к возбуждающей терминали, что приводит к уменьшению высвобождения медиатора и амплитуда возбуждающего постсинаптического потенциала снижается. Торможение вслед за возбуждением – это вторичное торможение. После окончания возбуждения нейрона в нём может развиваться сильная следовая гиперполяризация. При этом возбуждающий постсинаптический потенциал не может довести деполяризацию мембраны до критического уровня и потенциал действия не возникает. Пессимальное торможение – это вторичное торможение, которое развивается в возбуждающих синапсах в результате сильной деполяризации постсинаптической мембраны под влиянием слишком большого количества нервных импульсов. По современным представлениям оно играет небольшую роль в механизмах работы мозга
|