Молекулярная теплоемкость газа. 


Мы поможем в написании ваших работ!



ЗНАЕТЕ ЛИ ВЫ?

Молекулярная теплоемкость газа.

Поиск

Теплоёмкость тела (обычно обозначается латинской буквой C) — физическая величина, определяющая отношение бесконечно малого количества теплоты δ Q, полученного телом, к соответствующему приращению его температуры δ T:

Единица измерения теплоёмкости в системе СИ — Дж/К.

Удельной теплоёмкостью называется теплоёмкость, отнесённая к единичному количеству вещества. Количество вещества может быть измерено в килограммах, кубических метрах и молях. В зависимости от того, к какой количественной единице относится теплоёмкость, различают массовую, объёмную и молярную теплоёмкость.

Теплоёмкость для различных состояний вещества

Понятие теплоёмкости определено как для веществ в различных агрегатных состояниях (твёрдых тел, жидкостей, газов), так и для ансамблей частиц и квазичастиц (в физике металлов, например, говорят о теплоёмкости электронного газа).

Для примера, в молекулярно-кинетической теории газов показывается, что молярная теплоёмкость идеального газа с i степенями свободы при постоянном объёме равна:

R ≈ 8,31 Дж/(моль·К) — универсальная газовая постоянная.

А при постоянном давлении

Удельные теплоёмкости многих веществ приведены в справочниках обычно для процесса при постоянном давлении. К примеру, удельная теплоёмкость жидкой воды при нормальных условиях — 4200 Дж/(кг·К); льда — 2100 Дж/(кг·К).

Термодинамика

Первое начало термодинамики

Первое начало термодинамики — один из трёх основных законов термодинамики, представляет собой закон сохранения энергии для термодинамических систем.

Существует несколько эквивалентных формулировок первого начала термодинамики

В любой изолированной системе запас энергии остаётся постоянным.[2] Это — формулировка Дж. П. Джоуля (1842 г.).

Количество теплоты, полученное системой, идёт на изменение её внутренней энергии и совершение работы против внешних сил

Изменение внутренней энергии системы при переходе её из одного состояния в другое равно сумме работы внешних сил и количества теплоты, переданного системе, то есть, оно зависит только от начального и конечного состояния системы и не зависит от способа, которым осуществляется этот переход. Это определение особенно важно для химической термодинамики[2] (ввиду сложности рассматриваемых процессов). Иными словами, внутренняя энергия является функцией состояния. В циклическом процессе внутренняя энергия не изменяется.

Изменение полной энергии системы в квазистатическом процессе равно количеству теплоты Q, сообщённому системе, в сумме с изменением энергии, связанной сколичеством вещества N при химическом потенциале μ, и работы A '[3], совершённой над системой внешними силами и полями, за вычетом работы A, совершённой самой системой против внешних сил

Δ U = QA + μΔ N + A '.

Для элементарного количества теплоты δ Q, элементарной работы δ A и малого приращения dU внутренней энергии первый закон термодинамики имеет вид:

dU = δ Q − δ A + μ dN + δ A '.

Разделение работы на две части, одна из которых описывает работу, совершённую над системой, а вторая — работу, совершённую самой системой, подчёркивает, что эти работы могут быть совершены силами разной природы вследствие разных источников сил.

Важно заметить, что dU и dN являются полными дифференциалами, а δ A и δ Q — нет.

[править]Частные случаи

Рассмотрим несколько частных случаев:

1. Если δ Q > 0, то это означает, что тепло к системе подводится.

2. Если δ Q < 0, аналогично — тепло отводится.

3. Если δ Q = 0, то система не обменивается теплом с окружающей средой и называется адиабатически изолированной.

Обобщая: в конечном процессе элементарные количества теплоты могут быть любого знака. Общее количество теплоты, которое мы назвали просто Q — это алгебраическая сумма количеств теплоты, сообщаемых на всех участках этого процесса. В ходе процесса теплота может поступать в систему или уходить из неё разными способами.

При отсутствии работы над системой и потоков энергии-вещества, когда δ A ' = 0, δ Q = 0, dN = 0, выполнение системой работы δ A приводит к тому, что Δ U < 0, и энергия системы U убывает. Поскольку запас внутренней энергии U ограничен, то процесс, в котором система бесконечно долгое время выполняет работу без подвода энергии извне, невозможен, что запрещает существование вечных двигателей первого рода.

Первое начало термодинамики:

§ при изобарном процессе

§ при изохорном процессе (A = 0)

§ при изотермическом процессе (Δ U = 0)

Здесь — масса газа, — молярная масса газа, — молярная теплоёмкость при постоянном объёме, — давление, объём и температура газа соответственно, причём последнее равенство верно только для идеального газа.



Поделиться:


Последнее изменение этой страницы: 2021-03-09; просмотров: 178; Нарушение авторского права страницы; Мы поможем в написании вашей работы!

infopedia.su Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Обратная связь - 3.142.251.42 (0.007 с.)