Осевые моменты инерции некоторых тел 


Мы поможем в написании ваших работ!



ЗНАЕТЕ ЛИ ВЫ?

Осевые моменты инерции некоторых тел

Поиск

Моменты инерции однородных тел простейшей формы относительно некоторых осей вращения

Тело Описание Положение оси a Момент инерции Ja
Материальная точка массы m На расстоянии r от точки, неподвижная
Полый тонкостенный цилиндр или кольцо радиуса r и массы m Ось цилиндра
Сплошной цилиндр или диск радиуса r и массы m Ось цилиндра
Полый толстостенный цилиндр массы m с внешним радиусом r2 и внутренним радиусом r1 Ось цилиндра
Сплошной цилиндр длины l, радиуса r и массы m Ось перпендикулярна к цилиндру и проходит через его центр масс
Полый тонкостенный цилиндр (кольцо) длины l, радиуса r и массы m Ось перпендикулярна к цилиндру и проходит через его центр масс
Прямой тонкий стержень длины l и массы m Ось перпендикулярна к стержню и проходит через его центр масс
Прямой тонкий стержень длины l и массы m Ось перпендикулярна к стержню и проходит через его конец
Тонкостенная сфера радиуса r и массы m Ось проходит через центр сферы
Шар радиуса r и массы m Ось проходит через центр шара
Конус радиуса r и массы m Ось конуса
  Равнобедренный треугольник с высотой h, основанием a и массой m Ось перпендикулярна плоскости треугольника и проходит через вершну
  Правильный треугольник со стороной a и массой m Ось перпендикулярна плоскости треугольника и проходит через центр масс
  Квадрат со стороной a и массой m Ось перпендикулярна плоскости квадрата и проходит через центр масс

Пример, вычисления

Найти моменты инерции Ix и Iy относительно осей Ox и Oy пластины с плотностью ρ = 1, ограниченной кривыми xy = 1, xy = 2, y = 2 x, x = 2 y и расположенной в I квадранте.

 

Решение.

Данная пластинка G изображена на рисунке

По формулам для Ix и Iy имеем

Чтобы свести каждый из этих двойных интегралов к повторному, нужно область G разбить на три части. Удобнее перейти к полярным координатам: x = ρ cos φ, y = ρ sin φ. Тогда φ изменяется от до (см. рисунок), а при каждом значении φ из сегмента [ φ 1, φ 2] переменная ρ изменяется от (значение ρ на кривой xy = 1, уравнение которой в полярных координатах в I квадранте имеет вид ) до (значение ρ на кривой xy = 2). Следовательно,

Аналогично получаем .

Теорема Штейнера

Теоре́ма Гю́йгенса — Ште́йнера, или просто теорема Штейнера (названа по имени швейцарского математика Якоба Штейнера и голландского математика, физика и астронома Христиана Гюйгенса):момент инерции тела J относительно произвольной оси равен сумме момента инерции этого тела JC относительно параллельной ей оси, проходящей через центр масс тела, и произведения массы тела m на квадрат расстояния d между осями:

       Иллюстрация теоремы для момента площади.

где

JC — известный момент инерции относительно оси, проходящей через центр масс тела,

J — искомый момент инерции относительно параллельной оси,

m — масса тела,

d — расстояние между указанными осями.

[править]Вывод

Момент инерции, по определению:

Радиус-вектор можно расписать как разность двух векторов:

,

где — радиус-вектор расстояния между старой и новой осью вращения. Тогда выражение для момента инерции примет вид:

Вынося за сумму , получим:

Поскольку старая ось проходит через центр масс, то суммарный импульс тела будет равен нулю:

Тогда:

Откуда и следует искомая формула:

,

где JC — известный момент инерции относительно оси, проходящей через центр масс тела.

[править]Пример

Момент инерции стержня относительно оси, проходящей через его центр и перпендикулярной стержню, (назовём её осью C) равен

Тогда согласно теореме Штейнера его момент относительно произвольной параллельной оси будет равен

где d — расстояние между искомой осью и осью C. В частности, момент инерции стержня относительно оси, проходящей через его конец и перпендикулярной стержню, можно найти положив в последней формуле d = L / 2:



Поделиться:


Последнее изменение этой страницы: 2021-03-09; просмотров: 140; Нарушение авторского права страницы; Мы поможем в написании вашей работы!

infopedia.su Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Обратная связь - 3.139.88.246 (0.009 с.)