Заглавная страница Избранные статьи Случайная статья Познавательные статьи Новые добавления Обратная связь FAQ Написать работу КАТЕГОРИИ: АрхеологияБиология Генетика География Информатика История Логика Маркетинг Математика Менеджмент Механика Педагогика Религия Социология Технологии Физика Философия Финансы Химия Экология ТОП 10 на сайте Приготовление дезинфицирующих растворов различной концентрацииТехника нижней прямой подачи мяча. Франко-прусская война (причины и последствия) Организация работы процедурного кабинета Смысловое и механическое запоминание, их место и роль в усвоении знаний Коммуникативные барьеры и пути их преодоления Обработка изделий медицинского назначения многократного применения Образцы текста публицистического стиля Четыре типа изменения баланса Задачи с ответами для Всероссийской олимпиады по праву Мы поможем в написании ваших работ! ЗНАЕТЕ ЛИ ВЫ?
Влияние общества на человека
Приготовление дезинфицирующих растворов различной концентрации Практические работы по географии для 6 класса Организация работы процедурного кабинета Изменения в неживой природе осенью Уборка процедурного кабинета Сольфеджио. Все правила по сольфеджио Балочные системы. Определение реакций опор и моментов защемления |
Сходимость сеточного метода решения краевых задач для обыкновенных диф. уравнений.Содержание книги
Похожие статьи вашей тематики
Поиск на нашем сайте
Для граничной задачи , (1) y(a)=A, y(b)=B (2) на равномерной сетке xi=a+ih, i=0,1,...,N;h=(b-a)/N построена разностная схема , (3) y0=A, yN=B (4). Точное решение y(x) в узлах сетки: , (5) , y(xN)=B (6). Для погрешности, с которой алгебраические уравнения (3) приближают диф-ое уравнение (1) в узлах сетки, была получена оценка (7). Граничные условия приближаются точно. Фактическое решение системы (3), (4), вследствие выч-ой погрешности, отличается от точного решения yi этой системы, => , (8) (9) Оценим погрешности . Вычитая из (5), (6) соотв. ур-ния (8), (9), получим разностную задачу , (10) (11). Лемма. Пусть выполняются условия:1) 2) g(x)≤0,a≤x≤b 3) 4) , для произвольных последовательностей , .Тогда , i=0,1,...N. Док-во. Рассмотрим 2 числовые последовательности zi±εi, i=0,1,...,N. Из условия 3) леммы имеем , i=1,2...N-1. В силу принципа max для оператора последоват-ти zi±εi,i=0,1,...N принимают свое наименьшее отрицательное значение на границе. Из условия (4) на границе имеем z0±ε0≥0 и zN±εN≥0. Т.о. zi±εi≥0, i=0,1,...N лемма доказана. Построим посл-ть zi. Рассм. граничную задачу: ,(12) E(a)=0,E(b)=0 (13) При a<x<b решение E(x) этой задачи положительно: E(x)>0. Докажем это от противного. Пусть существует такое , что и . Тогда внутри отрезка найдется точка , в которой достигается неположит-ый min: . В результате противоречие . Для последов-ти выполняются условия 4) леммы сравнения при любой положительной константе C. Найдем значение константы C, при котором будут выполнены условия 3). Из (10) и (7) имеем , или (14), где , , , . Из получим при достаточно малом h , ,(15), где , . Из (14) и (15) следует, что для вып. усл. 3) леммы сравн. полож. константы C должно удовлетворять неравенству . => получ. .Использ. лемму сравнения, приходим к искомой оценке (16) Из оценки (16) вытекает, что решение системы (8), (9) при h→0 равномерно сходится к решению y(x) исходной задачи (1), (2), если δ/h2→0 при h→0.
Методы прогонки и пристрелки решения разностных схем при решении краевых задач для обыкновенных д.у. Для гран. задачи на равномерной сетке была построена разностная схема . Коэффициенты в уpавнениях (3): (5). Метод разностной пристрелки. (3) можно решить относительно Так как , то )>0 и операция деления в (6) реализуется. Последовательность, образуемая по правилу (6) однозначно определяется значениями первых двух своих членов: Постpоим последоват-ти взяв в (6) Очевидно, последоват-ть ,i=0,1…N (7) при любом значении паpаметpа σ удовлетворяет сис-ме (3) и левому граничному условию . Чтобы выполнялось пpавое гpаничное условие , нужно взять (8)
Метод разностной прогонки. Уравнение можем записать: Пусть мы выpазили через фоpмулой Подставим это для в (3): - . Отсюда находим Т.о. коэффициенты в (9) После этого из (9) пpи i=N имеем . По фоpмуле (9) пpи i=N,N-1…2 последовательно вычисляем . Гpаничные значения даны. Данный метод решения граничной задачи - метод пpогонки. Вычисления по (10) - прямой ход прогонки, а по (9) – обратный. Теорема. В расчетных формулах (10) знаменатели не обращаются в нуль. Доказательство. Задано =0. Пусть <1, тогда | |= . Далее =| |<1. Утверждение теоремы доказано. Т.к. <1, вычисления по формуле (9) будут устойчивы к вычислению погрешности. Исследуем устойчивость к вычислению погрешности формулы (10) к φi. Цепочка преобразований: ; тут . Учитывая при 0≤i≤N оценка Т.о. на прямом ходе прогонки по (10) при ограниченые, =>устойчивы к вычислительной погрешности. Эквивалентность граничных и вариационных задач Рассмотрим граничную задачу , (1) (2) Считаем, что при данных предположениях существует единственное решение задач (1),(2) класса . Задача (1),(2) поставим в соответствующую вариационную задачу (3) На множестве (4) Теорема. Пусть решение вариационной задачи (3),(4), тогда удовлетворяет задаче (1),(2). Док- во Если функция доставляет функционалу , то она необходимо удовлет-воряет условию Эйлера . В данном случае это уравнение будет иметь вид: Теорема Пусть решение задачи (1),(2), тогда на функции функционал принимает минимальное решение и кроме того явл. Решением задачи (3),(4). Док-во. Положим , где такова что , тогда (5) Рассмотрим первое слагаемое второго интеграла в первой части равенства (5), интегрируем по частям имеем: С учетом этого равенства и того, что - решение задачи (1),(2) перепишем (5) в виде: (6) В силу условий наложенных на функции и интеграл , поэтому из (6) следует, что на функцию фукционал принимает минимальное значение. Далее, если , то , а значит , поскольку , то .
|
|||||
Последнее изменение этой страницы: 2016-04-06; просмотров: 440; Нарушение авторского права страницы; Мы поможем в написании вашей работы! infopedia.su Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Обратная связь - 18.218.128.229 (0.01 с.) |