Тема 4. Свойства электронов. Работа выхода электро-нов. Движение электронов в электрических и магнитных полях. 


Мы поможем в написании ваших работ!



ЗНАЕТЕ ЛИ ВЫ?

Тема 4. Свойства электронов. Работа выхода электро-нов. Движение электронов в электрических и магнитных полях.



Цели и задачи изучения темы:

Целью изучения данной темы является ознакомление со свойствами электронов и их поведением в магнитных и электрических полях.

Свойства электронов.

Работа электронных приборов и интегральных микросхем основана на управлении концентрацией, скоростью, и направлением движения заряжен-ных частиц в различных средах с помощью электрических и магнитных полей. Изучение свойств этих частиц и их поведения в различных условиях с помощью электрических и магнитных полей является необходимой предпосылкой для понимания работы разнообразных электронных элементов.

В связи с этим возникает вопрос:

Почему именно электрон наилучшим образом удовлетворяет тре-бованиям, предъявляемым к частицам, выступающим в качестве носи-телей тока в электронных приборах?

Свойства электронов достаточно хорошо изучены. Электрон – это электрически заряженная частица, имеющая:

отрицательный заряд е=1.602× 10-19 Кл;

массу mе = 9,109× 10-31 кг;

радиус rе= 2,82 × 10-15 м;

удельный заряд = 1,759× 1011 Кл/кг.

Ни одна другая частица не имеет такого большого значения отношения заряда к массе , как электрон. Это позволяет легко отличить его от других частиц.

Электроны обладают следующими основными свойствами:

в электрическом поле электроны испытывают воздействие силы и сами могут создавать электрическое поле;

Электроны отталкиваются друг от друга;

Движущиеся электроны образуют электрический ток. Следовательно, подобно электрическому току, проходящему последовательно, поток электронов создает магнитное поле и в поперечном магнитном поле сам испытывает воздействие силы;

Находясь в движении электрон обладает кинетической энергией, равной . При столкновении электрона с каким либо телом их кинетическая энергия превращается в тепловую; при соударении движущегося электрона с нейтральным атомом кинетическая энергия электрона может быть затрачена на ионизацию атома;

Благодаря большой величине электрон обладает высокой подвижностью.

Как уже отмечалось, в соответствии с квантовой теорией электроны, помимо свойств, присущих отдельным материальным частицам (корпускулам), обладают также и волновыми свойствами. Установлено, что электронам, как и световым лучам, свойственно явление дифракции, т.е. огибание препятствия, поставленного на их пути. Особенно заметны волновые свойства электронов в пространстве, линейные размеры которого сравнимы с размерами электрона.

Работа выхода электронов и влияние адсорбционных слоев на работу выхода.

Работа выхода электронов

Для работы электронных приборов необходимы свободные электроны. Только в этом случае они смогут выполнять функции носителей электричес-кого тока. Как получить такие электроны? На первый взгляд, ответ не вызы-вает затруднений – ведь каждое из окружающих нас веществ содержит мно-жество электронов. Задача заключается лишь в том, чтобы «оторвать» их от ядра и при необходимости «извлечь» из вещества. Но, оказывается, это возможно лишь при выполнении определенных условий, о которых и пойдет речь ниже.

При температуре абсолютного нуля (Т =0° К) и отсутствии других источников возбуждения электроны в атомах любого вещества занимают уровни с наименьшей энергией. В проводниках, обладающих высокой концентрацией электронов в зоне проводимости, распределение электронов по величинам энергии можно изобразить графиком (рис. 4.2.1), названным распределением Ферми (по оси абсцисс отложено значение энергии, а по оси ординат – количество электронов).

Из графика (кривая 1) видно. что при температуре абсолютного нуля нет электронов, обладающих энергией, большей ЕF (уровень Ферми). Величина ЕF зависит от физических свойств материала и определяется выражением

, (4.2.1)

где h постоянная Планка;

me масса электрона;

N число свободных электронов в 1 см3 проводника.

В металлах N» 1022…1023. Поэтому максимальная энергия ЕF элект-ронов внутри металла достигает десятков электрон-вольт. Однако выход электронов на поверхность металла при температуре абсолютного нуля и отсутствии внешних воздействий (освещения поверхности проводника, бомбардировка пучком электронов и т.п.) не наблюдается. Это объясняется двумя причинами. Во-первых, те немногие электроны, которые выходят за пределы проводника, теряют большую часть своей энергии и накапливаются на поверхности металла. Между этими электронами и положительными ионами, находящимися внутри металла у его поверхности, образуется элект-рическое поле, направленное от проводника к слою электронов (рис. 4.2.2).


Совокупность положительных ионов у поверхности металла и электронов, появля-ющихся над поверхностью, называется двойным элект-рическим слоем. Действие двойного электри-ческого слоя на электроны, стремящиеся покинуть пределы металла, является тормозящим, так как этим электронам приходится лететь по направлению электрических силовых линий и отдавать свою энергию полю.

Во-вторых, если некоторое количество электронов все же вышло за пределы металла в окружающую среду, то металл будет их обратно притягивать. Объясняется это тем, что металл, лишенный части электронов, заряжается поло-жительно и, следовательно, между ним и вылетевшими электронами возникает электри-ческое поле, препятствующее выходу новых электронов.

Таким образом, для отрыва от поверхности проводника электроны должны затратить работу против электрических сил, возвращающих их обратно, т.е. некоторую полную энергию

Ea= EF + E0 (4.2.2)

Величина E0 называется работой выхода. Работа по перемещению электрона из проводника в окружающее пространство равна произведению заряда электрона е на пройденную разность потенциалов φ0. Поэтому

E0 = Ea- EF= е φ0. (4.2.3)

Эта работа измеряется в электрон-вольтах (эВ).

Диаграмма изменения энергии при переходе электрона из металла в вакуум приведена на рис. 4.2.3. По оси ординат отложена величина энергии в соответствующих точках пространства, а по оси абсцисс – расстояние от поверхности металла. В целом кривая изображает потенциальный барьер, удерживающий электроны в металле.

Участок ab соответствует максимальной энергии электрона ЕF внутри металла; высота потенциального барьера определяет полную энергию Еа, которую электрон должен иметь для выхода из металла, разность этих энергий соответствует работе выхода электрона е φ0.

Величина работы выхода твердых тел зависит от их структуры и явля-ется физической характеристикой тела. Чем меньше у данного проводника работа выхода, тем меньшей должна быть затрата энергии для получения свободных электронов вне этого проводника.

Несколько сложнее обстоит дело с определением работы выхода электронов из полу-проводника. Как видно из рис. 4.2.4, выход электронов возможен из зоны проводимости с затратой работы χ0, с примесных уровней с затратой работы χ1 и из валентной зоны с затратой работы χ2, χ3.

Наименьшая работа χ0 требуется для удаления электрона из зоны проводимости. Однако выход только таких электронов будет приводить к нарушению равновесного состояния электронного газа, которое может восстанавливаться за счет перехода электронов в зону проводимости с примесных уровней и из валентной зоны. Такой переход требует затраты работы, которая совершается частично за счет внутренней энергии кристалла, вследствие чего при восстановлении равновесия кристалл охлаждается. При удалении электронов из валентной зоны равновесие восстанавливается путем перехода в эту зону части электронов из зоны проводимости. Это сопровождается выделением энергии и приводит к нагреванию кристалла.

И только одновременное удаление электронов с уровней, расположенных выше и ниже уровня Ферми, и в таком соотношении, чтобы их средняя энергия отвечала уровню химического потенциала, не приводит к изменению температуры полупроводника и нарушению равновесия системы. Поэтому и для полупроводников за работу выхода принимают расстояние от уровня Ферми до нулевого уровня, хотя на самом уровне Ферми может не находиться ни одного электрона.

Работа выхода измеряется обычно в электрон-вольтах. Отношение работы выхода к заряду электрона представляет собой потенциал выхода. Работа выхода, измеренная в электрон-вольтах, численно равна потенциалу выхода, измеренному в вольтах.



Поделиться:


Последнее изменение этой страницы: 2017-02-07; просмотров: 1469; Нарушение авторского права страницы; Мы поможем в написании вашей работы!

infopedia.su Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Обратная связь - 3.21.93.44 (0.012 с.)