Заглавная страница Избранные статьи Случайная статья Познавательные статьи Новые добавления Обратная связь FAQ Написать работу КАТЕГОРИИ: АрхеологияБиология Генетика География Информатика История Логика Маркетинг Математика Менеджмент Механика Педагогика Религия Социология Технологии Физика Философия Финансы Химия Экология ТОП 10 на сайте Приготовление дезинфицирующих растворов различной концентрацииТехника нижней прямой подачи мяча. Франко-прусская война (причины и последствия) Организация работы процедурного кабинета Смысловое и механическое запоминание, их место и роль в усвоении знаний Коммуникативные барьеры и пути их преодоления Обработка изделий медицинского назначения многократного применения Образцы текста публицистического стиля Четыре типа изменения баланса Задачи с ответами для Всероссийской олимпиады по праву Мы поможем в написании ваших работ! ЗНАЕТЕ ЛИ ВЫ?
Влияние общества на человека
Приготовление дезинфицирующих растворов различной концентрации Практические работы по географии для 6 класса Организация работы процедурного кабинета Изменения в неживой природе осенью Уборка процедурного кабинета Сольфеджио. Все правила по сольфеджио Балочные системы. Определение реакций опор и моментов защемления |
Комплексный чертеж окружностиСодержание книги
Похожие статьи вашей тематики
Поиск на нашем сайте
Если окружность расположена в плоскости уровня, то на одну плоскость проекций она проецируется в отрезок, а на другую – в окружность (в натуральную величину). На рис.10.2 показан комплексный чертеж окружности k, расположенной в горизонтальной плоскости уровня S. На P2 окружность проецируется в отрезок (часть прямой S2), а на P1 – в окружность. Окружность, расположенная в плоскости, не параллельной и не перпендикулярной плоскости проекций, проецируется на эту плоскость в кривую, которая называется эллипсом. Диаметры окружности будут проецироваться в отрезки, которые называются диаметрами эллипса. Длина диаметра эллипса равна длине диаметра окружности, умноженной на косинус угла наклона диаметра окружности к плоскости проекций. Диаметр окружности, расположенный на линии уровня, проецируется в натуральную величину, так как угол наклона его к плоскости проекций равен нулю. Этот диаметр будет больше всех остальных диаметров, он и назван большим диаметром эллипса. Диаметр окружности, перпендикулярный большому, наклонен к той же плоскости проекций под наибольшим углом. Его называют малым диаметром эллипса. Построение эллипса по большому и малому диаметрам, которые взаимно перпендикулярны, приведено ниже. На рис. 10.3 показано построение одной точки эллипса. Так, пусть даны: AB – большой диаметр эллипса; CD – малый диаметр эллипса. После проведения большой окружности диаметром AB и малой окружности диаметром CD, проводим произвольный луч m. Через точку 1 на большой окружности проводим отрезок, параллельный малой оси CD, а через точку 2 на малой окружности – отрезок, параллельный большой оси AB. Точка пересечения построенных отрезков является точкой эллипса (точка M). Проводя множество лучей, проходящих через точку O (проекция центра окружности), и повторяя показанные построения, получим множество точек эллипса. Затем по лекалу, соединяя эти точки, получим эллипс. На рис 10.4 показана последовательность построения эллипса по большому диаметру и точке эллипса. Даны: AB – большой диаметр эллипса; M – точка эллипса. Последовательность построений показана стрелками. Эти построения следуют из рассмотренных на рис. 10.3. После определения точки 2, а значит, и малой оси CD, можем перейти к построению любого числа точек эллипса, как показано на рис. 10.3.
Пусть окружность радиуса R расположена теперь во фронтально проецирующей плоскости D, центр окружности – точка O. Для нахождения большого диаметра эллипса необходима линия уровня. Через точку O проведем горизонталь h (h1, h2) в плоскости D. На h1 отложим отрезки O1A1=O1B1, длины которых равны R. Отрезок A1B1 – это большой диаметр эллипса, в который проецируется окружность на П1. Через точку O в плоскости D проведем фронталь f(f1,f2). На f2 отложим отрезки O2C2=O2D2, длины которых равны R. Точки C и D являются точками окружности, которые расположены на фронтали f. Горизонтальные проекции этих точек принадлежат f1 (точки C1 и D1). Так как отрезок C1D1 перпендикулярен большому диаметру A1B1, то C1D1 – это малый диаметр эллипса на П1. Теперь по большому диаметру A1B1 и малому диаметру C1D1 строим эллипс (горизонтальная проекция окружности). Фронтальной проекцией окружности является отрезок C2D2, так как D – фронтально проецирующая плоскость и все фронтальные проекции точек окружности расположены на прямой D2 между точками C2 и D2. То же самое получим, если будем строить эллипс на П2 по большому диаметру C2D2 и малому диаметру, величина которого равна нулю. Если окружность расположена в плоскости общего положения, то она проецируется на П1 в эллипс (горизонтальная проекция окружности) и на П2 – тоже в эллипс (фронтальная проекция окружности). В этом случае эллипсы строятся по большому диаметру и точке. Пусть плоскость общего положения, в которой расположена окружность радиуса R, задана прямыми h (h1, h2) и f (f1,f2). Обратим внимание на то, что в качестве прямых, задающих плоскость, взяты ее главные линии – горизонталь и фронталь. Точка O – центр окружности. На h1 строим большой диаметр 1121 (|O111|=|O121|=R). Это большой диаметр горизонтальной проекции окружности. На f2 строим большой диаметр 3242 (|O232| = |O242| = R). Это большой диаметр фронтальной проекции окружности. Строим для точки 3 горизонтальную проекцию 31. На П1 имеем 1121 – большой диаметр эллипса, 31 – точка эллипса. Строим для точки 2 фронтальную проекцию 22. На П2 имеем 3242 – большой диаметр эллипса, 22 – точка эллипса. Теперь каждую из проекций окружности можно построить по большому диаметру и точке. Если при задании плоскости окружности горизонталь и фронталь не использовались, то их нужно провести, а затем выполнить описанные выше построения.
|
||||
Последнее изменение этой страницы: 2017-02-05; просмотров: 593; Нарушение авторского права страницы; Мы поможем в написании вашей работы! infopedia.su Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Обратная связь - 3.137.181.194 (0.01 с.) |