Окружность, описанная около треугольника. 


Мы поможем в написании ваших работ!



ЗНАЕТЕ ЛИ ВЫ?

Окружность, описанная около треугольника.



Окружность называется описанной около треугольника, если она проходит через все его вершины.

[П] Теорема о центре окружности, описанной около треугольника.

Центр окружности, описанной около треугольника, является точкой пересечения перпендикуляров к сторонам треугольника, проведенных через середины этих сторон.

Дано: АВС — данный треугольник; О — центр описанной около него окружности (рис. 30).

Доказать: О — точка пересечения серединных перпендикуляров.



Доказательство. Треугольник АОС равнобедренный: у него стороны О А и ОС равны как радиусы. Медиана OD этого треугольника одновременно является его высотой. Поэтому центр окружности лежит на прямой, перпендикулярной стороне АС и проходящей через ее середину. Точно так же доказывается, что центр окружности лежит на перпендикулярах к двум другим сторонам треугольника.

Замечание. Прямую, проходящую через середину отрезка перпендикулярно к нему, часто называют серединным перпендикуляром. В связи с этим иногда говорят, что центр окружности, описанной около треугольника, лежит на пересечении серединных перпендикуляров к сторонам треугольника.

[А] Теорема об окружности, описанной около треугольника.

Около любого треугольника можно описать окружность.

Дано: АВС — данный треугольник; О — точка пересечения серединных перпендикуляров (рис. 31).

Доказать: О — центр окружности, вписанной в АВС.

Доказательство. Обозначим буквой О точку пересечения серединных перпендикуляров к его сторонам и проведем отрезки ОА, ОВ и ОС. Так как точка О равноудалена от вершин треугольника АВС, тоОА = OB — ОС. Поэтому окружность с центром О радиуса ОА проходит через все три вершины треугольника и, значит, является описанной около треугольника ABC.

Замечание. Отметим, что около треугольника можно описать только одну окружность. В самом деле, допустим, что около треугольника можно описать две окружности. Тогда центр каждой окружности равноудален от вершин треугольника и, значит, совпадает с точкой О пересечения серединных перпендикуляров к сторонам треугольника, а радиус равен расстоянию от точки О до вершин треугольника. Следовательно, эти окружности совпадают.

 

 

Задача по теме «Сумма углов треугольника».


 

 

Задача по теме «Трапеция».

Докажите, что отрезок, соединяющий середины диагоналей трапеции, параллелен основаниям трапеции и равен полуразности оснований.



 

 

Построение с помощью циркуля и линейки треугольника по трем сторонам.

Построение (рис. 32). «Пусть а — большая из трех сторон. Возьмем произвольный луч с началом С и проведем окружность радиуса а с центром в точке С.



Точку пересечения луча и окружности обозначим В (постр. 1). Проведем еще одну окружность радиуса b с центром в точке С (постр. 2) и окружность радиуса С с центром в точке В (постр. 3).

Если а < b + с, то эти две окружности пересекаются в двух точках. Пусть А — одна из этих точек. Тогда по построению треугольник ABC имеет стороны заданной длины а, b, с.

Если а > b + с, то эти две окружности не пересекаются и задача решения не имеет.

 

Сложение векторов. Свойства сложения векторов.




Для доказательства достаточно сравнить соответствующие координаты векторов, стоящих в правой и левой частях равенства. Они равны, а векторы с соответственно равными координатами равны.

Каковы бы ни были точки А, В, С, имеет место векторное равенство



чения суммы двух векторов называется «правилом треугольника» сложения векторов.

Для векторов с общим началом их сумма изображается диагональю параллелограмма, построенного на этих векторах (правило параллелограмма)









 

 

Задача по теме «Многоугольники».

Сколько сторон имеет выпуклый многоугольник, если все его внешние углы тупые?

Решение. Обозначим внешний угол многоугольника через а. По условию все внешние углы тупые, т. е. а > 90°. Так как сумма внешних углов выпуклого многоугольника равна 360°, то а • п — 360°. Отсюда следует, что п не более трех. А так как п — целое, то п = 3.

 

 

Умножение вектора на число. Свойство произведения вектора на число.










 

 



Поделиться:


Последнее изменение этой страницы: 2016-09-19; просмотров: 413; Нарушение авторского права страницы; Мы поможем в написании вашей работы!

infopedia.su Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Обратная связь - 44.197.238.222 (0.009 с.)