Заглавная страница Избранные статьи Случайная статья Познавательные статьи Новые добавления Обратная связь FAQ Написать работу КАТЕГОРИИ: АрхеологияБиология Генетика География Информатика История Логика Маркетинг Математика Менеджмент Механика Педагогика Религия Социология Технологии Физика Философия Финансы Химия Экология ТОП 10 на сайте Приготовление дезинфицирующих растворов различной концентрацииТехника нижней прямой подачи мяча. Франко-прусская война (причины и последствия) Организация работы процедурного кабинета Смысловое и механическое запоминание, их место и роль в усвоении знаний Коммуникативные барьеры и пути их преодоления Обработка изделий медицинского назначения многократного применения Образцы текста публицистического стиля Четыре типа изменения баланса Задачи с ответами для Всероссийской олимпиады по праву Мы поможем в написании ваших работ! ЗНАЕТЕ ЛИ ВЫ?
Влияние общества на человека
Приготовление дезинфицирующих растворов различной концентрации Практические работы по географии для 6 класса Организация работы процедурного кабинета Изменения в неживой природе осенью Уборка процедурного кабинета Сольфеджио. Все правила по сольфеджио Балочные системы. Определение реакций опор и моментов защемления |
Таутомерия глюкозы и что такое мутаротацияСодержание книги
Поиск на нашем сайте
В природе встречается только D-глюкоза, к-рая выделена в виде двух аномеров: и глюкопиранозы (соотв. ф-лы I и II). Первая кристаллизуется из воды в виде моногидрата с т. пл. 83°С; для безводной формы т. пл. 146°С, + 112,2° (вода). Аномер кристаллизуется из пиридина или нек-рых др. р-рителей; его т. пл. 148-150°С, +18,9° (вода). В водном р-ре устанавливается динамич. равновесие м/у неск. таутомерами: и формами D-глюкофуранозы (ф-лы соотв. III и IV) и D-глюкопиранозы, открытой альдегидной (V) и ее гидратной формой (VI). Содержание и глюкопираноз составляет соотв. ок. 64 и 36%, др. таутомеров - менее 1%. Равновесное +52,7°. Самый устойчивый таутомер- -глюкопираноза в конформации кресла (ф-ла VII). При восстановлении D-глюкозы обр-ется сорбит, при окислении альдегидной группы - D-глюконовая к-та, при окислении последней-двухосновная сахарная к-та (дополнительно окисляется первичная гидроксигруппа), при окислении только первичной гидроксигруппы (при защите альдегидной)-D-глюкуроновая к-та. Осн. пути метаболизма D-глюкозы: 1) гликолиз и аэробное окисление до СО2 и Н2О, в результате к-рых обр-ются АТФ и др. макроэргич. соединения; 2) синтез олиго- и полисахаридов; 3) превращение в пентозы и др. простые сахара в пентозофосфатном цикле. О биосинтезе D-глюкозы см. Глюконеогенез. КоА кофермент А КоА, кофермент ацетилирования (или ацилирования), важнейший из коферментов, принимающий участие в реакциях переноса ацильных групп. Молекула КоА состоит из остатка адениловой кислоты (1), связанной пирофосфатной группой (2) с остатком пантотеновой кислоты (3), которая, в свою очередь, соединена пептидной связью с остатком β-меркаптоэтаноламина (4); С КоА связан обширный круг биохимических реакций, лежащих в основе окисления и синтеза жирных кислот, биосинтеза липидов, окислительных превращений продуктов распада углеводов и т. д. Во всех случаях КоА действует как промежуточное соединение, связывающее (акцептирующее) и переносящее кислотные остатки на др. вещества. При этом кислотные остатки либо подвергаются в составе соединения с КоА тем или иным превращениям, либо передаются без изменений на определённые метаболиты. «Активную» форму органических кислот представляют ацильные остатки, присоединённые к сульфгидрильной (SH) группе КоА макроэргической ацилтиоэфирной связью. Пантотеновая к-та в виде КоА участвует в УГном и жировом обмене, в синтезе ацетилхолина, в коре надпочечников стимулирует обр-ние кортикостероидов. Биосинтез пантотеновой к-ты осуществляется из пантоевой к-ты (она синтезируется из 2-оксоизовалериановой к-ты) и р-аланина. Катаболизм KoA у высших жив на первых стадиях осущ-ся неспецифич деацилазами и фосфа-тазами до 4'-фосфопантетеина или пантетеина. Пантетиназа, активность к-рой особенно высока в почечной ткани, гидро-лизует эти катаболиты до 4'-фосфопантотеновой к-ты, пантотеновой к-ты и цистеамина H2NCH2CH2SH, явл-ся конечными прод в катаболизме KoA у жив. Большинство микроорг-мов явл пантотенатпро-тотрофными, т. е. осуществляют биосинтез пантотеновой к-ты. Ее катаболизм у микроорг-мов начинается с гидролиза вит-а до D-пантоевой к-ты и -аланина; D-пантоевая к-та в последовательных р-циях превращ. в D-4-оксопантоевую, D-3,3-диметиляблочную и далее в 2-оксоизовалериановую к-ту. Пром. получение пантотеновой к-ты в форме ее солей осуществляют через D-пантолактон или D-пантамид. Рилизинг-факторы (либерины) Установлено, что по хим стр все гормоны гипоталамуса явл низкомол-лярными пептидами, так наз олигопептидами необычного стр-ия, хотя точный АМКный состав и первич стр-ра выяснены не для всех. 1. Тиролиберин (Пиро-Глу–Гис–Про–NH2): представлен трипептидом, состоящим из пироглутаминовой (циклической) к-ты, гистидина и пролинамида, соединенных пептидными связями. В отличие от классических пептидов он не содержит свободных NH2- и СООН-групп у N- и С-концевых АМК. 2. Гонадолиберин явл декапептидом, состоящим из 10 АМК в послед-сти: Пиро-Глу–Гис–Трп–Сер–Тир–Гли–Лей–Арг–Про–Гли-NН2 Концевая С-АМКа представлена глицинамидом. 3. Соматостатин явл циклическим тетрадекапептидом (состоит из 14 АМКных остатков). Отличается этот гормон тем, что не содержит на N-конце пироглутаминовой к-ты: дисульфидная связь обр-ется м/у двумя остатками цистеина в 3-м и 14-м положениях. Следует отметить, что синтетический линейный аналог соматостатина также наделен аналогичной биологической активностью, что свидетельствует о несущественности дисульфидного мостика природного гормона. Помимо гипоталамуса, соматостатин продуцируется нейронами центральной и периферической нервных систем, а также синтезируется в S-клетках панкреатических островков (островков Лангерганса) в поджелудочной железе и клетках кишечника. Он оказывает широкий спектр биологического действия; в частности, показано ингибирующее действие на синтез гормона роста в аденогипофизе, а также прямое тормозящее действие его на биосинтез инсулина и глюкагона в β- и α-клетках островков Лангерганса. 4. Соматолиберин недавно выделен из природных источников. Он представлен 44 АМКными остатками с полностью раскрытой послед стью. Биологической активностью соматолиберина наделен, кроме того, химически синтезированный декапептид. Этот декапептид стимулирует синтез и секрецию гормона роста гипофиза соматотропина. 5. Меланолиберин, химическая стр-ра к-рого аналогична стр-ре открытого кольца гормона окситоцина (без трипептидной боковой цепи), имеет следующее строение: 6. Меланостатин (меланотропинингибирующий фактор) представлен или трипептидом: Пиро-Глу–Лей–Гли-NН2, или пентапептидом со следующей послед стью. Необходимо отметить, что меланолиберин оказывает стимулирующее действие, а меланостатин, напротив, ингибирующее действие на синтез и секрецию меланотропина в передней доле гипофиза. Помимо перечисленных гипоталамических гормонов, интенсивно изучалась химическая природа другого гормона – кортиколиберина. Активные препараты его были выделены как из ткани гипоталамуса, так и из задней доли гипофиза; существует мнение, что последняя может служить депо гормона для вазопрессина и окситоцина. Недавно выделен состоящий из 41 АМКы с выясненной послед стью кортиколиберин из гипоталамуса овцы. Местом синтеза гипоталамических гормонов, вероятнее всего, явл нервные окончания – синаптосомы гипоталамуса, поскольку именно там отмечена наибольшая конц-ция гормонов и биогенных аминов. Последние рассматриваются наряду с гормонами периферических желез внутренней секреции, действующих по принципу обратной связи, в качестве основных регуляторов секреции и синтеза гормонов гипоталамуса. Механизм биосинтеза тиролиберина, осуществляющегося, скорее всего, нерибо-собальным путем, включает участие SH-содержащей синтетазы или комплекса ф-тов, кат-ющих циклизацию глутаминовой к-ты в пироглутаминовую, обр-ние пептидной связи и амидирование проли-на в присутствии глутамина. Существование подобного механизма биосинтеза с участием соотв-ующих синтетаз допускается также в отношении гонадолиберина и соматолиберина. Гипоталамические гормоны непосредственно влияют на секрецию (точнее, освобождение) «готовых» гормонов и биосинтез этих гормонов de novo. Доказано, что цАМФ участвует в передаче гормонального сигнала. Показано существование в плазматических мембранах клеток гипофиза специфических аденогипофизарных рецепторов, с к-рыми связываются гормоны гипоталамуса, после чего через систему аденилатциклазы и мембранных комплексов Са2+–АТФ и Mg2+–АТФ освобождаются ионы Са2+ и цАМФ; последний действует как на освобождение, так и на синтез соотв-ующего гормона гипофиза путем активирования протеинкиназы. Билет №11
|
||||
Последнее изменение этой страницы: 2017-01-24; просмотров: 442; Нарушение авторского права страницы; Мы поможем в написании вашей работы! infopedia.su Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Обратная связь - 3.138.124.28 (0.01 с.) |