Заглавная страница Избранные статьи Случайная статья Познавательные статьи Новые добавления Обратная связь FAQ Написать работу КАТЕГОРИИ: АрхеологияБиология Генетика География Информатика История Логика Маркетинг Математика Менеджмент Механика Педагогика Религия Социология Технологии Физика Философия Финансы Химия Экология ТОП 10 на сайте Приготовление дезинфицирующих растворов различной концентрацииТехника нижней прямой подачи мяча. Франко-прусская война (причины и последствия) Организация работы процедурного кабинета Смысловое и механическое запоминание, их место и роль в усвоении знаний Коммуникативные барьеры и пути их преодоления Обработка изделий медицинского назначения многократного применения Образцы текста публицистического стиля Четыре типа изменения баланса Задачи с ответами для Всероссийской олимпиады по праву Мы поможем в написании ваших работ! ЗНАЕТЕ ЛИ ВЫ?
Влияние общества на человека
Приготовление дезинфицирующих растворов различной концентрации Практические работы по географии для 6 класса Организация работы процедурного кабинета Изменения в неживой природе осенью Уборка процедурного кабинета Сольфеджио. Все правила по сольфеджио Балочные системы. Определение реакций опор и моментов защемления |
Задача о потребительском выборе.Содержание книги
Похожие статьи вашей тематики
Поиск на нашем сайте
В теории потребления предполагается, что потребитель всегда стремится максимизировать свою полезность и ограничением для него является величина дохода , которую он может потратить на приобретение набора товаров. В общем, задача потребительского выбора (задача рационального поведения потребителя на рынке) записывается следующим образом: найти такой потребительский набор , который максимизирует его функцию полезности при заданном бюджетном ограничении. Задачу потребительского выбора (для n- мерного набора) можно записать в виде: , (48.1) Задача потребительского выбора (для случая набора из двух товаров): найти такой набор , для которого , (48.2) .
Решение:
Рис. 48.1 Поиск оптимального набора графически можно изобразить как последовательный переход на кривые безразличия более высокого уровня полезности (см. рис. 48.1) вправо и вверх до тех пор, пока эти кривые имеют общие точки с бюджетным множеством. Из рисунка следует, что искомая точка лежит на границе G, т.е. на прямой . Таким образом, задача потребительского выбора сводится к задаче на условный экстремум функций двух переменных: найти точку , для которой: . Второе уравнение выражения называется уравнением связи. Для решения задачи используем метод Лагранжа. Составим функцию Лагранжа: , (48.3) где l - множитель Лагранжа. Из (48.3) следует экономический смысл множителя Лагранжа: если цены и доход меняются в одно и то же число раз l, то функция полезности и решение задачи потребительского выбора не изменятся. Для нахождения максимума функции приравняем к нулю все три частные производные этой функции, получим систему уравнений: (48.4) Исключив из этих уравнений l, получим систему двух уравнений с неизвестными , : (48.5) Из системы находится точка - решение задачи потребительского выбора. Вернемся к n -мерному набору. Итак, точка лежит на границе G и удовлетворяет условию . Поэтому задача потребительского выбора формулируется аналогично в виде задачи на условный экстремум: при заданных функции , векторе и величине найти такую точку, что: (48.6) Составим функцию Лагранжа: (48.7) Для нахождения максимума функции приравняем к нулю все частные производные этой функции, получим систему уравнений: (48.8) Исключив из уравнений множитель l, получим систему: (48.9) Решение системы - точка условного экстремума. Это решение общей задачи потребительского выбора. Точка называется точкой локального рыночного равновесия. Первое выражение системы (48.9) показывает, что отношение предельных полезностей продуктов в точке локального рыночного равновесия, или предельная норма замены i- го продукта j -м продуктом , равно отношению рыночных цен на эти продукты.
|
||||
Последнее изменение этой страницы: 2016-12-14; просмотров: 1063; Нарушение авторского права страницы; Мы поможем в написании вашей работы! infopedia.su Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Обратная связь - 3.142.212.119 (0.006 с.) |