Мы поможем в написании ваших работ!



ЗНАЕТЕ ЛИ ВЫ?

Платежная матрица. Нижняя и верхняя цена игры. Принцип минимакса.

Поиск

Игра называется игрой с нулевой суммой, или антагонистической, если выигрыш одного из игроков равен проигрышу другого, т.е. для полного задания игры достаточно указать величину одного из них. Если обозначить a - выигрыш одного из игроков, b - выигрыш другого, то для игры с нулевой суммой b = - a, поэтому достаточно рассматривать, например, a.

Выбор и осуществление одного из предусмотренных правилами действий называется ходом игрока. Ходы могут быть личными и случайными.

Личный ход - это сознательный выбор игроком одного из возможных действий (например, ход в шахматной игре).

Случайный ход - это случайно выбранное действие (например, выбор карты из перетасованной колоды). В своей работе я буду рассматривать только личные ходы игроков.

Стратегией игрока называется совокупность правил, определяющих выбор его действия при каждом личном ходе в зависимости от сложившейся ситуации. Обычно в процессе игры при каждом личном ходе игрок делает выбор в зависимости от конкретной ситуации. Однако в принципе, возможно, что все решения приняты игроком заранее (в ответ на любую сложившуюся ситуацию). Это означает, что игрок выбрал определенную стратегию, которая может быть задана в виде списка правил или программы. (Так можно осуществить игру с помощью ЭВМ). Игра называется конечной, если у каждого игрока имеется конечное число стратегий, и бесконечной - в противном случае.

Для того, чтобы решить игру, или найти решение игры, следует для каждого игрока выбрать стратегию, которая удовлетворяет условию оптимальности, т.е. один из игроков должен получать максимальный выигрыш, когда второй придерживается своей стратегии. В то же время второй игрок должен иметь минимальный проигрыш, если первый придерживается своей стратегии. Такие стратегии называются оптимальными. Оптимальные стратегии должны так же удовлетворять условию устойчивости, т.е. любому из игроков должно быть невыгодно отказаться от своей стратегии в этой игре.

 

Цель теории игр: определение оптимальной стратегии для каждого игрока. При выборе оптимальной стратегии естественно предполагать, что оба игрока ведут себя разумно с точки зрения своих интересов.

Антагонистические игры, в которых каждый игрок имеет конечное множество стратегий, называются матричными играми. Это название объясняется следующей возможностью описания игр такого рода. Составляем прямоугольную таблицу, в которой строки соответствуют стратегиям первого игрока, столбцы – стратегиям второго, а клетки таблицы, стоящие на пересечении строк и столбцов, соответствуют ситуациям игры. Если поставить в каждую клетку выигрыш первого игрока в соответствующей ситуации, то получим описание игры в виде некоторой матрицы. Эта матрица называется матрицей игры или матрицей выигрышей.

Одна и та же конечная антагонистическая игра может быть описана различными матрицами, отличающимися друг от друга лишь порядком строк и столбцов.

Рассмотрим игру m x n с матрицей Р = (aij ), i = 1,2,..., m;j = 1,2,..., n и определим наилучшую среди стратегий A1, А2, …, Аm. Выбирая стратегию Аi игрок А должен рассчитывать, что игрок В ответит на нее той из стратегий Bj, для которой выигрыш для игрока А минимален (игрок В стремится "навредить" игроку А). Обозначим через a i, наименьший выигрыш игрока А при выборе им стратегии Аi для всех возможных стратегий игрока В (наименьшее число в i-й строке платежной матрицы), т.е.

ai = aij, j = 1,..., n.

Среди всех чисел a i (i = 1,2,..., m) выберем наибольшее. Назовем a нижней ценой игры или максимальным выигрышем (максимином). Это гарантированный выигрыш игрока А при любой стратегии игрока В. Следовательно, , i = 1,..., m; j = 1,..., n

Стратегия, соответствующая максимину, называется максимальной стратегией. Игрок В заинтересован в том, чтобы уменьшить выигрыш игрока А; выбирая стратегию Bj, он учитывает максимально возможный при этом выигрыш для А.

Обозначим: β i = aij, i = 1,..., m

Среди всех чисел Bj выберем наименьшее и назовем β верхней ценой игры или минимаксным выигрышем (минимаксом). Это гарантированный проигрыш игрока В.

Следовательно, i = 1,..., m; j = 1,..., n.

Стратегия, соответствующая минимаксу, называется минимаксной стратегией.

Принцип, диктующий игрокам выбор наиболее "осторожных" минимаксной и максиминной стратегий, называется принципом минимакса. Этот принцип следует из разумного предположения, что каждый игрок стремится достичь цели, противоположной цели противника.



Поделиться:


Последнее изменение этой страницы: 2016-12-14; просмотров: 652; Нарушение авторского права страницы; Мы поможем в написании вашей работы!

infopedia.su Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Обратная связь - 3.133.120.64 (0.007 с.)