Заглавная страница Избранные статьи Случайная статья Познавательные статьи Новые добавления Обратная связь FAQ Написать работу КАТЕГОРИИ: АрхеологияБиология Генетика География Информатика История Логика Маркетинг Математика Менеджмент Механика Педагогика Религия Социология Технологии Физика Философия Финансы Химия Экология ТОП 10 на сайте Приготовление дезинфицирующих растворов различной концентрацииТехника нижней прямой подачи мяча. Франко-прусская война (причины и последствия) Организация работы процедурного кабинета Смысловое и механическое запоминание, их место и роль в усвоении знаний Коммуникативные барьеры и пути их преодоления Обработка изделий медицинского назначения многократного применения Образцы текста публицистического стиля Четыре типа изменения баланса Задачи с ответами для Всероссийской олимпиады по праву Мы поможем в написании ваших работ! ЗНАЕТЕ ЛИ ВЫ?
Влияние общества на человека
Приготовление дезинфицирующих растворов различной концентрации Практические работы по географии для 6 класса Организация работы процедурного кабинета Изменения в неживой природе осенью Уборка процедурного кабинета Сольфеджио. Все правила по сольфеджио Балочные системы. Определение реакций опор и моментов защемления |
Строение, свойства и биологические функции аминокислот.Содержание книги
Похожие статьи вашей тематики
Поиск на нашем сайте
Аминокислоты - это первичные азотистые вещества растений, которые синтезируются с использованием минерального азота, поступающего главным образом из почвы. В молекулах аминокислот имеются карбоксильные и аминные группировки, соединённые с органическим радикалом алифатической, ароматической или гетероциклической природы. Если аминокислота содержит одну карбоксильную и одну аминную группу, связанную со вторым углеродным атомом (α-положение), строение такой аминокислоты можно выразить следующей формулой: Аминокислоты, имеющие одну карбоксильную и одну аминную группу, принято называть моноамuномонокарбоновымu. У большинства из них аминогруппа находится в α-положении по отношению к атому углерода карбоксильной группы. Однако известны также некоторые аминокислоты, у которых аминогруппа связана с другими углеродными атомами (_b, γ, d и др., см. табл. 1). В организмах также синтезируются аминокислоты с двумя карбоксильными или двумя аминными и другими азотсодержащими группировками. Аминокислоты, содержащие две карбоксильные и одну аминную группы, обычно называют моноамuнодuкaрбоновы.мu, а имеющие две аминные и одну карбоксильную - диаминомонокарбоновымu. Кроме того, аминокислоты различаются по строению радикала R, который может быть представлен неразветвлённой, а иногда и разветвлённой углеродной цепью, ароматическими и гетероциклическими производными. Наряду с аминокислотами важную роль в обмене азотистых веществ играют некоторые иминокислоты (пролин, пипеколииовая кислота и др.), содержащие вторичную аминную группировку (═NH). Они близки по физико-химическим свойствам к истинным аминокислотам и выполняют сходные биологические функции. Важные функции в растительном организме выполняют производные аминокислот – амиды и бетаины, из которых наиболее хорошо изучены аспарагин, глутамин и гликоколбетаин. Аспарагин и глутамин участвуют в построении белковых молекул, являются продуктами обмена многих азотистых веществ. Гликоколбетаин ─ продукт азотного обмена у некоторых растений, служит активным донором метильных групп. Все аминокислоты, за исключением глицина, содержат асимметрические атомы углерода и проявляют оптическую активность. D- и L -формы аминокислот различают по положению водорода и аминогруппы у α-углеродного атома. За эталон сравнения принимаются конфигурации молекул L- и D -серина. Изомеры аминокислот, имеющие расположение в пространстве водорода и аминогруппы у α-углеродного атома такое же, как у L -серина, относят L- ряду, а сходное с конфигурацией молекулы D -серина – к D -ряду. Направление и угол вращения плоскости поляризации света у разных аминокислот и их оптических изомеров зависит от строения радикала R, реакции среды (рН), природы растворителя и растворённых в нём веществ. Подавляющее большинство природных аминокислот синтезируется в организмах в виде L -форм, а D -формы аминокислот встречаются редко, чаще всего в клетках микроорганизмов. При химическом синтезе образуется смесь L - и D -изомеров аминокислот. Ферментные системы растений, человека и животных специфически приспособлены катализировать биохимические реакции, происходящие с участием L -изомеров аминокислот, и не способны к превращениям D -изомеров, которые даже могут ингибировать биохимические процессы в организме. В опытах установлено, что только метионин может усваиваться организмами человека и животных как в L- форме, так и D- форме. Первые аминокислоты были открыты в начале XIX века, а к концу этого века уже были выделены и изучены почти все аминокислоты, входящие в состав белков. В настоящее время известно более 200 аминокислот. Важнейшая биологическая роль аминокислот - построение белковых молекул. Аминокислоты, участвующие в синтезе белков, принято называть протеиногенными, их насчитывается 18. Кроме того, в синтезе белков принимают участие два амида - аспарагин и глутамин. После синтеза белковой молекулы в ней могут происходить модификации радикалов некоторых аминокислот, поэтому при анализе состава белков, кроме протеиногенных, обнаруживают некоторые другие аминокислоты (оксипролин, оксилизин и др.). Аминокислоты, не участвующие в синтезе белков, являются важными метаболитами, с участием которых происходит синтез протеиногенных аминокислот, а также всех других азотистых веществ растительного организма: нуклеотидов, амидов, азотистых оснований, алкалоидов, некоторых липидов, многих витаминов, хлорофилла, фитогормонов (ауксинов, цитокининов), некоторых фитонцидов. Строение и биологическая роль важнейших аминокислот представлены в таблице 1. Растения и природные формы микроорганизмов способны синтезировать все необходимые им аминокислоты из других органических веществ, тогда как организмы человека и животных не способны к синтезу некоторых аминокислот, входящих в состав белков. Эти аминокислоты называют незаменимыми и они должны поступать в организм с пищей. Для взрослого человека незаменимыми являются 8 аминокислот: лизин, триптофан, метионин, треонин, лейцин, валин, изолейцин, фенилаланин. Для детей и некоторых групп животных незаменимыми также являются аргинин, гистидин и цистеин. При недостатке незаменимых аминокислот ослабляется синтез белков, что может быть причиной тяжелых заболеваний. А их недостаток в растительных кормах снижает выход животноводческой продукции в расчете на единицу массы затраченного корма, в результате чего повышается ее себестоимость. В целях составления правильного пищевого рациона для каждого вида организмов с учетом возрастного и физического состояния определены ежедневные нормы потребления незаменимых аминокислот. В среднем для человека они составляют, г: валин–5,0, лейцин–7,0, изолейцин –4,0, лизин–5,5, триптофан–1,0, треонин–4,0, метионин–3,5, фенилаланин –5,0. Чаще всего в кормах сельскохозяйственных животных в недостаточном количестве содержатся такие незаменимые аминокислоты, как лизин, триптофан и метионин. Для балансирования кормов по содержанию этих аминокислот разработаны промышленные способы их получения. В связи с тем, что лизин и триптофан усваиваются животными только в виде L - изомеров, то для производства кормовых препаратов указанных аминокислот применяют микробиологический синтез, при котором реализуется природный механизм образования L -изомеров аминокислот. Поскольку метионин может усваиваться животными в виде D- и L- форм, то для его промышленного получения используется менее затратный химический синтез, дающий рацемическую смесь оптических изомеров этой аминокислоты. Содержание свободных аминокислот в растениях зависит от вида органа или ткани, возраста растений, внешних условий и особенно подвержено большим изменениям в зависимости от интенсивности протекания тех биохимических процессов, которые сопряжены с их потреблением (синтез белков, нуклеиновых кислот и других азотистых веществ). Концентрация аминокислот повышается при ослаблении ростовых процессов, недостатке питательных элементов, избыточном азотном питании, усилении процессов распада белков при старении растений или прорастании семян. Концентрации отдельных аминокислот могут возрастать в результате метаболитных нарушений в организме и под воздействием стрессов. Так, например, при вододефицитном стрессе в клетках растений происходит накопление аминокислоты пролина, а при избыточном аммонийном питании – накопление аспарагина, глутамина и аргинина.
СВОЙСТВА АМИНОКИСЛОТ Чистые препараты аминокислот - белые кристаллические вещества, имеющие высокие температуры плавления (свыше 200˚С). Многие из них хорошо растворяются в воде, за исключением кислот с гидрофобными радикалами. В водном растворе карбоксильные группы аминокислот подвергаются диссоциации с образованием катионов водорода, а азот аминогруппы довольно активно присоединяет катионы водорода, превращаясь в заряженную группировку, в результате чего образуется биполярное соединение: В сильно кислой среде диссоциация карбоксильных групп подавляется высокой концентрацией ионов водорода и в таких условиях заряд молекулы будет положительным, так как он определяется зарядом атома азота, присоединившего протон: При понижении концентрации ионов водорода (увеличение рН) степень диссоциации карбоксильных rpyпп yвeличивaeтcя, а взаимодействие ионов водорода с азотом аминогруппы ослабляется, вследствие чего при определенном значении рН большая часть карбоксильных групп будет диссоциировать и молекула аминокислоты приобретает отрицательный заряд. В щелочной среде под воздействием высокой концентрации гидроксид-ионов происходит связывание катионов водорода, присоединенных к аминогруппе, с образованием воды, в результате чего заряд молекулы будет определяться только зарядом карбоксильной группы: При определенном значении рН среды положительный заряд аминогрупп полностью уравновешивается отрицательным зарядом карбоксильных групп и молекулы аминокислоты становятся элекrpонейтральными. Такое состояние молекулы принято называть изоэлектрической точкой. Если рН среды ниже рН изоэлектрической точки молекулы аминокислоты, то она заряжена положительно за счет заряда аминогруппы и ведет себя в водном растворе как катион. При рН среды выше рН изоэлектрической точки молекула аминокислоты заряжена отрицательно за счет диссоциации карбоксильной группы и ведет себя в водном растворе как анион. Опытным путём определено, что изоэлектрические точки моноаминомонокарбоновых кислот находятся в слабокислой среде(рН 5-6,5), так как кислотные свойства у них выражены несколько сильнее, чем основные. У моноаминодикарбоновых кислот кислотные свойства выражены значительно сильнее, поэтому их изоэлектрические точки находятся в кислой среде (рН 3-3,2). У диаминомонокарбоновых кислот сильнее выражены основные свойства, в связи с чем их изоэлектрические точки смещены в щелочную сторону (рН 9,7-10,8). В связи с тем, что в молекулах аминокислот имеются как кислотные, так и основные группировки, они проявляют амфотерные свойства и могут взаимодействовать и с кислотами, и с основаниями, образуя соответствую-щие соли:
Своими карбоксильными и аминными группировками аминокислоты могут вступать и в другие химические реакции, с помощью которых можно проводить качественный и количественный анализ этих соединений. При взаимодействии аминокислот со спиртами образуются сложные эфиры, которые подвергаются вакуумной перегонке при разных физических параметрах. Благодаря этому можно разделять смеси аминокислот путём получения и фракционной перегонки их эфиров. Аминокислоты довольно легко вступают в реакции с редуцирующими сахарами, образуя при этом темноокрашенные продукты– меланоидины. На первом этапе взаимодействия аминокислоты и моносахарида образуются продукты их разложения: из сахаров – фурфурол или оксиметилфурфурол, а из аминокислоты – альдегид, углекислый газ и аммиак. На следующем этапе фурфурол или оксиметилфурфурол, вступая в соединение с аминокислотами, образуют меланоидины. Интенсивность реакции усиливается при повышенной температуре, которая создается при термической обработке рacтитeльной продукции или её перерaботке (сушка овощей, фруктов и продуктов из картофеля, выпечка хлеба, получение макарон и кондитерских изделий). Аналогичные явления наблюдаются при самосогревании зерна. Промежуточные продукты меланоидинообразования – альдегиды создают специфический запах, характерный для тех или иных пищевых продуктов. Фурфурол имеет запах яблок, оксиметилфурфурол – запах мёда, изовалериановый альдегид, образуемый из аминокислоты лейцина, – запах ржаного хлеба. Конечные продукты реакций взаимодействия аминокислот с редуцирующими сахарами – меланоидины вызывают потемнение растительных продуктов, что ухудшает их товарные свойства. В процессе хлебопечения реакции образования меланоидинов влияют на формирование цвета, вкуса и аромата ржаного и пшеничного хлеба. В результате ферментативного окисления ароматических аминокислот тирозина и фенилаланина также образуются темноокрашенные продукты - меланины, вызывающие потемнение на воздухе очищенных клубней картофеля, измельченных корнеплодов, овощей и фрyкroв. Эти вещества совместно с меланоидинами определяют тёмный цвет ржаного хлеба и вызывают потемнение макарон при сушке. Меланины синтезируются в ходе крнденсации продуктов окисления тирозина и фенилаланина, возникающих под действием фермента тирозиназы (см. стр. …). В целях предотвращения потемнения растительных продуктов при хранении, сушке и переработке применяются технологии выращивания сельскохозяйственных культур, не допускающие накопления в товарной продукции редуцирующих сахаров и свободных аминокислот.
|
|||||
Последнее изменение этой страницы: 2016-12-13; просмотров: 501; Нарушение авторского права страницы; Мы поможем в написании вашей работы! infopedia.su Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Обратная связь - 3.147.80.121 (0.012 с.) |