Лекция 1. Предмет и методы биохимии. Строение, свойства и биологические функции углеводов и липидов. 


Мы поможем в написании ваших работ!



ЗНАЕТЕ ЛИ ВЫ?

Лекция 1. Предмет и методы биохимии. Строение, свойства и биологические функции углеводов и липидов.



Лекция 1. Предмет и методы биохимии. Строение, свойства и биологические функции углеводов и липидов.

Аннотация. Излагается история развития биохимии, что она изучает, какие методы используются в биохимии. Даются современные сведения об основных группах углеводов и липидов, их биологических функциях и содержании в растительных и других продуктах. Указывается значение углеводов и липидов в формировании качества растительной продукции.

Ключевые слова: биохимия (биологическая химия), метаболизм (обмен веществ организма), углеводы, моносахариды, олигосахариды, полисахариды, сахара, редуцирующие сахара, фуранозная и пиранозная формы моносахаридов, фосфорно-кислые эфиры моносахаридов, альдоновые, альдаровые, уроновые кислоты, липиды, жиры, фосфолипиды, гликолипиды, стероидные липиды, воски, незаменимые жирные кислоты, числа жиров, прогоркание жиров, высыхание растительных масел.

Рассматриваемые вопросы:

1. Предмет и методы биохимии.

  1. История развития биохимии.
  2. Образовательное и практическое значение биохимии.
  3. Строение, свойства и биологические функции моносахаридов.
  4. Строение, свойства и биологические функции олигосахаридов.
  5. Строение, свойства и биологические функции полисахаридов.
  6. Строение, свойства и биологические функции жиров.
  7. Строение, свойства и биологические функции фосфолипидов.
  8. Строение, свойства и биологические функции гликолипидов.
  9. Строение, свойства и биологические функции стероидных липидов.
  10. Строение, свойства и биологические функции восков.

Модульная единица 1. Введение.

Цели и задачи изучения модульной единицы. Ознакомить студентов с историей возникновения и развития биохимии, применением достижений биохимии в различных сферах науки, образования и производства.

Предмет и методы биохимии.

Биохимия (биологическая химия) изучает химические процессы, происходящие в живых организмах. Важнейшей ее задачей является исследование химического состава растений, микроорганизмов, человека и животных как на молекулярно-клеточном, так и организменном уровнях, а также выяснение строения, функций и механизмов превращения веществ, участвующих в жизнедеятельности организмов. Современную биохимию в полной мере можно считать наукой, главная цель которой – это познание химических основ жизненных явлений.

В зависимости от объектов исследования в качестве самостоятельных научных направлений выделяют биохимию микро-организмов, растений, животных и человека, а также техническую биохимию, изучающую химические процессы при хранении и переработке продуктов растительного, животного и микробного проис-хождения.

Химические превращения в живых организмах обычно называют биохимическими реакциями или процессами, а образующиеся продукты таких реакций - метаболитами. Вся совокупность биохимических реакций в организме объединяется более общим названием - обмен веществ или метаболизм. Последовательности биохимических реакций, связанных с синтезом и превращениями определенных хи-мических веществ или групп структурно близких соединений, принято называть метаболическими путями.

Являясь в своей основе химической наукой, биохимия широко использует химические и физико-химические методы исследований: колориметрический и спектроскопический анализ, различные виды хроматографии, избирательную адсорб-цию, ультрацентрифугирование, электрофорез и изоэлектрофокусировку, рентгено-структурный анализ, электронную микроскопию, ядерный магнитный резонанс, применение радиоактивных и стабильных изотопов и др. Вместе с тем у биохимии выработались и свои специфические методы исследований. Главные особенности этих методов - применение щадящих способов выделения веществ, лиофильное высуши-вание биологического материала и использование защитных добавок с целью сохранения нативных свойств изучаемых веществ.

В процессе биохимических исследований очень часто используют искусственные полипептиды и олигонуклеотиды, иммуносорбцию и иммунохими-ческий анализ, а также специфические ферментные препараты, позволяющие направленно изучать тот или иной биохимический процесс. С целью более глубокого познания химических превращений, происходящих в организмах, проводится моделирование биохимических процессов в искусственных системах вне организма, а также разработаны специальные методики для проведения биохимических экспериментов в живых объектах (растения, животные, микроорганизмы).

История развития биохимии.

Со времен глубокой древности люди в борьбе за свое существование научились использовать многие биохимические процессы, которые были положены в основу различных производств: приготовление хлеба, сыра, вина и пива, дубление кож, ферментация чая и табака, получение кисломолочных и квашеных продуктов, лекарственных, витаминных и других препаратов. Однако механизмы этих процессов длительное время оставались неизвестными.

Интенсивное изучение органических веществ было начато в XVIII веке, когда в химическом анализе стали применять количественные методы. Из тканей животных и растений были выделены многие химические вещества и исследователи предпринимали попытки выяснить их свойства и биологические функции в организме. Особенно заметным событием в становлении биохимии как самостоятельной науки следует считать открытие действия ферментов - биологических катализаторов белковой природы, с помощью которых осуществляются химические реакции в живых организмах. Ученый Российской академии наук К.С.Кирхгоф в 1814 году установил, что в прорастающем зерне пшеницы содержится вещество, способное катализировать гидролитическое превращение крахмала в декстрины и сахар. Это вещество впо-следствии назвали амилазой. А в настоящее время известно, что гидролиз крахмала катализирует не один фермент, а целая группа амилаз.

Открытие К.С.Кирхгофа положило начало активному исследованию ферментативных реакций и к концу XIX века стало совершенно очевидным, что почти все химические превращения в живых клетках происходят с участием ферментов и благодаря действию этих катализаторов обеспечивается нормальная жизнедея-тельность организмов. В дальнейшем Э.Бухнер (1897 г.) обнаружил в бесклеточных дрожжевых экстрактах вещества, способные катализировать брожение сахара, и таким образом было показано, что в основе микробиологических процессов также находятся определенные химические реакции, которые происходят под воздействием ферментов, выделяемых в окружающую среду микробными клетками.

В течение XVIII-XIX веков проводилось изучение многих химических веществ, входящих в состав растительных и животных тканей, определялось их содержание и значение для питания и хозяйственной деятельности человека.В середине XIX века, используя новые аналитические методы, Ю.Либих определил содержание в пищевых продуктах белков, углеводов и жиров, а Н.Э.Лясковский выполнил детальные исследования по оценке содержания белков в зерне пшеницы и количества азота в растительных белках. В 1868 г. швейцарский химик И.Ф.Мишер впервые обнаружил в клеточном ядре дезоксирибонуклеиновую кислоту (ДНК). В 1880 году Н.И.Лунин открыл в молоке вещества, которые впоследствии назвали витаминами. Э.Г.Фишер в 1901 г. сформулировал основные положения полипептидной теории строения белков. Таким образом, к концу XIX века биохимия сформировалась как самостоятельное научное направление, которое называли физиологической химией. Современное название этой науки "биохимия", или "биологическая химия", было дано в начале XX века (К.Нейберг,1903г.) и в дальнейшем оно уже окончательно вошло в перечень фундаментальных биологических наук.

Бурное развитие биохимии наблюдалось в течение всего XX века, когда во многих научных и образовательных учреждениях появились биохимические лаборатории и кафедры. В результате развернувшейся исследовательской работы уже проводилось не только изучение строения и функций органических веществ, входящих в состав организмов, но и выяснение механизмов их синтеза, распада и превращений.

С использованием современных методов определены структура, химический состав и биологические функции отдельных компонентов живого организма: органов, тканей, клеток, всех клеточных органелл и внутриклеточных мембранных комплексов. Значительные успехи достигнуты в разработке теории ферментативного катализа и регуляции химических процессов в организмах под действием аллостерических ферментов, гормонов и регуляторных белков. В результате углубленного изучения ультраструктуры клетки исследователям удалось сформулировать основные концепции биоэнергетических процессов и биохимических превращений, происходящих с участием клеточных мембран и связанных с ними ферментных комплексов. Достижения биохимии послужили основой для познания молекулярных основ морфогенеза и причин возникновения различных заболеваний, вызванных недостатком витаминов, незаменимых аминокислот и жирных кислот, а также болезней, связанных с недостаточным синтезом ферментов.

Биохимиками выполнены фундаментальные исследования по изучению особен-ностей химического состава сельскохозяйственных, технических и лекарственных растений, в результате которых раскрыты механизмы синтеза и превращений основных химических веществ, участвующих в их жизнедеятельности и формировании урожая, а также определяющих качество растительной продукции. В ходе таких исследований установлено влияние природно-климатических факторов, агротехники и химических средств на количественную и качественную изменчивость химического состава рас-тений и растительных продуктов. В основном выяснены бихимические механизмы превращений веществ, происходящих при хранении и переработке сельскохозяйственной продукции.

 

Образовательное и практическое значение биохимии.

Основные направления развития современной биохимии - дальнейшее изучение ферментативных и биоэнергетических процессов; познание регуляторных механизмов на уровне отдельных органов, тканей, клеток и внутриклеточных структур, а также целого организма; разработка биохимических основ управления процессами жизнедеятельности организмов и оптимизации факторов внешней среды. Важное значение имеет также теоретическое обоснование различных прикладных направлений биохимии, связанных с развитием новых технологий получения пищевых продуктов, кормовых и лекарственных препаратов, а также выращивания сельскохозяйственных культур и создания высокопродуктивных генотипов животных, растений и микроорганизмов.

В связи с тем, что биохимия изучает молекулярные процессы в организмах, она служит теоретической основой для ряда других наук - физиологии, молекулярной генетики, микробиологии, экологии, биотехнологии, фитопатологии, агрохимии, химической защиты растений. Достижения биохимии находят широкое применение в различных областях хозяйственной деятельности человека: селекции животных, растений и микроорганизмов, медицине, пищевой, парфюмерной и биотехнологи-ческой промышленности,сельском хозяйстве. Сведения по биохимии расширяют наши представления об устройстве окружающего нас мира, и прежде всего мира живой природы, поэтому они имеют важное образовательное значение.

Вопросы для повторения:

1. Что изучает биохимия? 2. Как подразделяют биохимию по объектам изучения? 3. Что называют метаболизмом? 4. Какие методы используются в биохимии? 5. Какие открытия послужили началом для развития биохимии? 6. Каковы основные этапы развития биохимии? 7. С какими другими науками тесно связана биохимия? 8. Как используются достижения биохимии в науке, производстве и образовательной деятельности человека? 9. Каковы достижения биохимии по изучению сельскохозяйственных растений?

Вопросы для повторения.

1. Каковы структурные особенности стереоизомеров моносахари­дов, относящихся к D-или L-ряду? 2. Как образуются циклические формы моносахаридов и в чём состоят различия а - и b-стереоизоме­ров? 3. Как записывается структура пиранозных и фуранозных форм моносахаридов с помощью формул Хеуорса? 4. Какие образуются кон­формации молекул у гексоз и пентоз? 5. Как образуются окисленные и восстановленные производные, а также фосфорнокислые эфиры мо­носахаридов? 6. В чём состоят особенности образования гликозидов, дезокси- и аминопроизводных моносахаридов? 7. Каковы структур­ные и биологические особенности важнейших альдоз и кетоз? 8. Как об­разуются молекулы сахарозы, мальтозы, целлобиозы, b-левулина и других олигосахаридов? 9. Из каких моносахаридов и по какому принципу строятся молекулы важнейших полисахаридов - крахмала, полифруктозидов, целлюлозы и гемицеллюлоз, пектиновых веществ, камедей и слизей? 10. Какие биологические функции выполняют ука­занные выше олигосахариды и полисахариды? 11. Каково содержа­ние сахаров и различных полисахаридов в растительных продуктах? 12. Какие моносахариды и олигосахариды относятся к редуцирующим сахарам? 13. Какое значение имеют углеводы в фор­мировании качества растительных продуктов? 14. Из каких основных компонентов состоит крахмал и каковы строение и свойства этих компонентов? 15. Какие известны разновидности гемицеллюлоз и пектиновых веществ?

Вопросы для повторения.

1. Каковы основные группы липидов и какие они выполняют функции в организмах? 2. Из каких жирных кислот и ацилглицеринов образуются молекулы жиров? 3. В чём состоят особенности твёрдых и жидких жиров, а также жиров разных растений? 4. Какие жирные кислоты называют незаменимыми и почему? 5. Для чего и как используются показатели, называемые числами жиров? 6. Какие химические изменения происходят в процессах прогоркания и высыхания жиров? 7. Как классифицируют растительные масла по способности к высыханию? 8. Каковы структурные и функциональные особенности различных групп фосфолипидов и гликолипидов? 9. Какие известны разновидности стероидных липидов? 10. В чём состоят химические и биологические особенности воска у различных видов растений? 11. В каком количестве содержатся различные группы липидов в растительных продуктах? 12. Как влияют липиды на качество растительной продукции?

СВОЙСТВА АМИНОКИСЛОТ

Чистые препараты аминокислот - белые кристаллические ве­щества, имеющие высокие температуры плавления (свыше 200˚С). Многие из них хорошо растворяются в воде, за исключением кислот с гидрофобными радикалами. В водном растворе карбоксильные группы аминокислот подвергаются диссоциации с образованием катионов водорода, а азот аминогруппы довольно активно присоеди­няет катионы водорода, превращаясь в заряженную группировку, в результате чего образуется биполярное соединение:

В сильно кислой среде диссоциация карбоксильных групп подавляется высокой концентрацией ионов водорода и в таких условиях заряд молекулы будет положительным, так как он опре­деляется зарядом атома азота, присоединившего протон:

При понижении концентрации ионов водорода (увеличение рН) степень диссоциации карбоксильных rpyпп yвeличивaeтcя, а взаимо­действие ионов водорода с азотом аминогруппы ослабляется, вследствие чего при определенном значении рН большая часть кар­боксильных групп будет диссоциировать и молекула аминокисло­ты приобретает отрицательный заряд.

В щелочной среде под воздействием высокой концентрации гидроксид-ионов происходит связывание катионов водорода, при­соединенных к аминогруппе, с образованием воды, в результате чего заряд молекулы будет определяться только зарядом карбо­ксильной группы:

При определенном значении рН среды положительный заряд аминогрупп полностью уравновешивается отрицательным зарядом карбоксильных групп и молекулы аминокислоты становятся элекrpо­нейтральными. Такое состояние молекулы принято называть изо­электрической точкой. Если рН среды ниже рН изоэлектрической точки молекулы аминокислоты, то она заряжена положительно за счет заряда аминогруппы и ведет себя в водном растворе как катион. При рН среды выше рН изоэлектрической точки молекула аминокислоты заряжена отрицательно за счет диссоциации карбо­ксильной группы и ведет себя в водном растворе как анион.

Опытным путём определено, что изоэлектрические точки моно­аминомонокарбоновых кислот находятся в слабокислой среде(рН 5-6,5), так как кислотные свойства у них выражены несколько сильнее, чем основные. У моноаминодикарбоновых кислот кислот­ные свойства выражены значительно сильнее, поэтому их изоэлект­рические точки находятся в кислой среде (рН 3-3,2). У диамино­монокарбоновых кислот сильнее выражены основные свойства, в связи с чем их изоэлектрические точки смещены в щелочную сторону (рН 9,7-10,8).

В связи с тем, что в молекулах аминокислот имеются как кис­лотные, так и основные группировки, они проявляют амфотерные свойства и могут взаимодействовать и с кислотами, и с основаниями, образуя соответствую-щие соли:

 

Своими карбоксильными и аминными группировками амино­кислоты могут вступать и в другие химические реакции, с помощью которых можно проводить качественный и количественный анализ этих соединений. При взаимодействии аминокислот со спиртами образуются сложные эфиры, которые подвергаются вакуумной пе­регонке при разных физических параметрах. Благодаря этому можно разделять смеси аминокислот путём получения и фракционной перегонки их эфиров.

Аминокислоты довольно легко вступают в реакции с редуцирую­щими сахарами, образуя при этом темноокрашенные продукты– меланоидины. На первом этапе взаимодействия аминокислоты и моносахарида образуются продукты их разложения: из сахаров – фурфурол или оксиметилфурфурол, а из аминокислоты – альдегид, углекислый газ и аммиак. На следую­щем этапе фурфурол или оксиметилфурфурол, вступая в соединение с аминокислотами, образуют меланоидины. Интенсивность реакции усиливается при повышенной температуре, которая создается при термической обработке рacтитeльной продукции или её перерaботке (сушка овощей, фруктов и продуктов из картофеля, выпечка хлеба, получение макарон и кондитерских изделий). Аналогичные явле­ния наблюдаются при самосогревании зерна.

Промежуточные продукты меланоидинообразования – альдегиды создают специфический запах, характерный для тех или иных пищевых продуктов. Фурфурол имеет запах яблок, оксиметилфурфурол – запах мёда, изовалериановый альдегид, образуемый из аминокислоты лейцина, – запах ржаного хлеба. Конечные продукты реакций взаимодействия аминокислот с редуцирующими сахарами – меланоидины вызывают потемнение растительных продуктов, что ухудшает их товарные свойства. В процессе хлебопечения реакции образования меланоидинов влияют на формирование цвета, вкуса и аромата ржаного и пшеничного хлеба.

В результате ферментативного окисления ароматических амино­кислот тирозина и фенилаланина также образуются темноокрашен­ные продукты - меланины, вызывающие потемнение на воздухе очищен­ных клубней картофеля, измельченных корнеплодов, овощей и фрyкroв. Эти вещества совместно с меланоидинами определяют тёмный цвет ржаного хлеба и вызывают потемнение макарон при сушке.

Меланины синтезируются в ходе крнденсации продуктов окисления тирозина и фенилаланина, возникающих под действием фермента тирозиназы (см. стр. …).

В целях предотвращения потемнения растительных продуктов при хранении, сушке и переработке применяются технологии выращивания сельскохозяйственных культур, не допускающие накопления в товарной продукции редуцирующих сахаров и свободных аминокислот.

СТРОЕНИЕ БЕЛКОВЫХ МОЛЕКУЛ

Первый белковый препарат был выделен из пшеничной муки в 1728 году Я.Б.Беккари и назван клейковиной. В 1809-10 г.г. появились первые сведения об элементном составе, а в 1836 г. предложена первая эмпири-ческая формула белков. В дальнейшем довольно активно многими иссле-дователями проводилось изучение продуктов распада белковых веществ и появлялось все больше и больше сведений о том, что основными про-дуктами гидролитического разложения белков являются аминокислоты. К 1899 г. уже было известно 13 аминокислот, большинство из которых были идентифицированы как продукты гидролиза белков.

Основополагающий вклад в разработку теории строения белков внесли работы Э.Фишера, который в 1901 г. предположил и затем экспери-ментально обосновал положение о том, что белковые молекулы постро-ены из аминокислот, остатки которых соединены пептидными связями. Образующиеся таким путем полимеры обычно называют полипептидами, а учение о построении белковых молекул из аминокислот, соединенных пептидными связями, - полипептидной теорией строения белков.

В образовании пептидной связи участвуют α-аминокислоты, которые взаимодействуют своими аминными и карбоксильными группами, при этом высвобождаются молекулы воды. У диаминомонокарбоновых кислот пептидную связь может образовать только аминогруппа, находящаяся в α-по-ложении, а у моноаминодикарбоновых кислот - карбоксильная группа, имеющая в α-положении аминогруппу. Углеводородные радикалы амино-кислотных остатков, соединенных пептидными связями, остаются в виде боковых радикалов. Так, например, из аланина, аспарагиновой кислоты и лизина образуется трипептид:

Название пептида составляется из названий образующих его амино-кислот, при этом аминокислота, имеющая свободную карбоксильную группу, записывается в конце формулировки, а у других аминокислот окончание изменяют на "ил" и их перечисляют в названии пептида в том порядке, в котором они находятся в структурной формуле полученного соединения. В соответствии с этим выше представленный трипептид имеет название - аланиласпарагиллизин.

Методом рентгеноструктурного анализа показано, что атомные группировки пептидной связи расположены в одной плоскости, образуя преимущественно транс -конфигурацию относительно связи C-N, которая в значительной мере имеет характер двойной связи, и вращение вокруг этой связи сильно ограничено.

 

В целом пространственное построение полипептидной цепи можно представить как последовательность плоских структур, образуемых эле-ментами пептидной связи, которые соединены через α-углеродные атомы аминокислотных радикалов. Поскольку связи у α-углеродных атомов не являются двойными, вокруг них возможно вращение расположенных в плоскости пептидной связи группировок.

Если поменять порядок соединения аминокислот в пептиде, то мы получим несколько изомеров. Чаще всего в состав белковых полипепти-дов могут входить 100-400 аминокислотных остатков, которые, соединяясь пептидными связямми в определенном порядке, могут давать огромное число изомерных молекул, способных выполнять разнообразные биологи-ческие функции. В общем виде строение полипептида можно выразить следующей формулой:

В этой формуле аминокислотные остатки соединены связями -СО-NH-, которые и называют пептидными, а R1, R2, R3...Rn - радикалы амино-кислотных остатков, содержащие различные группировки атомов и обра-зующие боковые ответвления в молекуле полипептида.

На противоположных концах полипептидной цепи имеются свобод-ная аминная и свободная карбоксильная группы, по которым определяют направленность полипептида. Аминокислота на конце полипептидной цепи, имеющая свободную аминогруппу в α-положении, называется N-концевой аминокислотой, а аминокислота на противоположном конце полипептида, имеющая свободную карбоксильную группу, не использованную для образования пептидной связи, - C-концевой аминокислотой. Определение N- и C-концевых аминокислот имеет важное значение для выяснения строения белковой молекулы, так как позволяет установить в ней число полипептидных цепей.

Большинство известных белков содержат в молекуле более одной полипептидной цепи и этим существенно отличаются от обычных пептидов, имеющих одну полипептидную цепь и более низкую молекулярную массу. Однако чёткую границу между пептидами и белками провести довольно трудно; и те, и другие имеют вполне определенную пространственную структуру и выполняют свою биохимическую функ-цию. Основными критериями следует считать степень полимерности молекулы, обеспечи-вающую ей необходимые коллоидные, осмотические, буферные и другие свойства, характерные для белков, а также способность формировать определённую пространственную структуру. Самая низкая степень полимерности известных белков составляет не менее 50 аминокислотных остатков в одной молекуле. Вместе с тем известны некоторые белки, молекулы которых насчитывают свыше тысячи аминокислотных остатков.

Пептиды в различных организмах очень часто синтезируются с по-мощью тех же механизмов, как и белки, и представляют собой важные промежуточные продукты обмена веществ, многие из них выполняют регуляторные функции и относятся к физиологически активным соеди-нениям. Однако известны пептиды, в синтезе которых принимают участие аминокислоты, не входящие в состав белков, они способны образовывать циклические структуры. К таким пептидам относятся антибиотики грами-цидин, циклоспорин, тироцидин и токсины бледной поганки. К пептидам, выполняющим регуляторные функции, относятся многие гормоны человека и животных (окситоцин, вазопрессин, адренокортикотропный гормон и некоторые другие).

Из растительных пептидов наиболее хорошо изучен глютатион, структура которого была выяснена в 1945 г. Ф.Гопкинсом. Молекула глю-татиона включает остатки трёх аминокислот - глутаминовой кислоты, цис-теина и глицина. Глицин и цистеин соединены пептидной связью, а цистеин и глутаминовая кислота - псевдопептидной (или изопептидной) связью, которая образуется при взаимодействии аминогруппы цистеина с карбоксильной группой глутаминовой кислоты, не имеющей в α –положе-нии аминогруппы и в составе белковых полипептидов обычно находящейся в составе бокового радикала.

H2N-CH-CH2-CH2-CO-NH-CH-CO-NH-CH2-COOH

│ │

COOH CH2SH

глютатион

Высокая биологическая активность глютатиона обусловлена его спо-собностью участвовать в восстановительных реакциях, так как под дей-ствием фермента он может легко отщеплять водород от сульфгидрильной группы (-SH) и переходить в восстановленную форму, образуя димеры, связанные дисульфидными (-S-S-) связями. Схематически образование окисленных димеров глютатиона можно представить следующим образом:

фермент

R-SH + HS-R ¾¾® R-S-S-R + фермент - H2

Глютатион содержится во всех растительных клетках и оказывает влияние на активность многих ферментов, катализирующих превращения белков.

Учитывая высокую биологическую активность многих пептидов, разрабатываются технологии их химического синтеза с целью получения искусственных гормонов, антибиотиков, различных медицинских препа-ратов. Как показывают опыты, путем химического синтеза можно полу-чать полипептидные цепи, содержащие до 100 аминокислотных остатков. Особенно значительные успехи достигнуты в результате сочетания хими-ческого и ферментативного синтезов. Так, например, из природных поли-пептидов путем частичного гидролиза выделяют пептидные фрагменты нужного состава, а затем их соединяют с помощью химических реакций или ферментативного синтеза, получая таким образом биологически активные пептидные препараты.

После того, как была сформулирована и экспериментально подтвер-ждена полипептидная теория строения белков, следующим этапом было определение структурных формул белков, показывающих последова-тельность соединения аминокислотных остатков в белковых молекулах. Впервые это удалось выполнить Ф.Сенгеру в 1954 г., применившему новые подходы в химической идентификации концевых аминокислот у различных пептидов, которые могут быть получены при частичном гидролизе полипептидов изучаемого белка.

Сопоставление аминокислотных последовательностей перекрываю-щихся фрагментов полипептидных цепей гормона поджелудочной железы- инсулина позволило ему с достаточно высокой точностью определить последовательность соединения аминокислотных остатков в молекуле этого белка. Как оказалось, молекула инсулина состоит из двух полипептидных цепей, в одной из которых содержится 30 аминокислотных остатков, в другой - 21. Полипептидные цепи в двух положениях соединены дисуль-фидными связями, которые образуются при взаимодействии сульфгид-рильных групп (-SH) цистеиновых радикалов точно по такому же меха-низму, как у димеров глютатиона. Положение этих цистеиновых остатков в полипептидных цепях инсулина показано на рисунке 5.

Следует учитывать, что нумерацию аминокислотных остатков в по-липептидах принято исчислять в направлении от N-концевой аминокислоты к С-концевой. В короткой цепи инсулина образуется еще одна дисульфидная связь между остатками цистеина в 6-м и 11-м положениях. В длинной цепи N-концевая аминокислота - фенилаланин, С-концевая аминокислота - аланин; в короткой цепи N-концевая аминокислота – глицин, С-концевая - аспарагин. Таким образом, на примере инсулина мы видим, что молекула белка может быть построена не из одного полипептида и разные полипептидные цепи в молекуле белка могут соединяться дисульфидными связями за счёт цистеиновых остатков.

Вслед за инсулином были расшифрованы аминокислотные последо-вательности различных пептидов и белков: окситоцина, вазопрессина, РНК-полимеразы, пепсина, трипсина, лизоцима, цитохромов, гемоглоби-на, папаина и многих других полиаминокислотных соединений. Уже к 1975 г. насчитывалось 600 белков с известными аминокислотными после-довательностями, к 1985 г. - свыше 2500. В настоящее время работа по анализу аминокислотных последовательностей в белках почти полностью автоматизирована и число таких белков уже значительно превышает 20 тысяч.

ПЕРВИЧНАЯ СТРУКТУРА БЕЛКОВ. Последовательность соедине-ния аминокислот в полипептидных цепях белковой молекулы принято называть первичной структурой белка. Она определяется последователь-ностью нуклеотидов конкретного участка ДНК, кодирующего данный полипептид и называемого геном.

Замена даже одной аминокислоты в структуре белка может сущест-венно изменить его функцию. Поэтому полипептиды можно рассматривать как "отпечатки" кодирующих их генов и использовать для распознавания генотипов, а также установления между ними генетического родства. Так, например, в короткой полипептидной цепи инсулина человека в положениях 8, 9 и 10 находится последовательность аминокислот Thr-Ser-Ile, в инсулине овцы - Ala-Gly-Val, в инсулине коровы - Ala-Ser-Val, в инсулине собаки - Thr-Ser-Ile, то есть такая же аминокислотная последовательность, как и у человека, что свидетельствует о меньшем филогенетическом различии между этими организмами.

В других исследованиях, связанных с изучением аномальных форм гемоглобина, установлено, что во многих случаях замена в одной из его полипептидных цепей хотя бы одной аминокислоты на другую вызывает нарушение физиологической функции этого белка, которое приводит к серьезным клиническим последствиям для организма человека.

ВТОРИЧНАЯ СТРУКТУРА БЕЛКОВ. Полипептидная цепь, вклю-чающая последовательность аминокислотных остатков, характерную для данного белка, формирует вполне определённую пространственную структуру, которую обычно называют конформацией белковой молекулы.

Пространственное же строение каждого отдельного участка полипептид-ной цепи представляет собой вторичную структуру белка.

Формирование вторичной структуры белковых молекул зависит от физико-химических параметров аминокислотных остатков и их последова-тельности в полипептидной цепи. Как уже было отмечено, атомные груп-пировки пептидной связи располагаются в одной плоскости, а каждая такая плоскостная структура соединяется с соседней через α-углеродные атомы аминокислотных радикалов ковалентными связями, вокруг которых возможно вращение плоскостных структур пептидных связей. Угол пово-рота по каждой из этих связей для каждого аминокислотного остатка вполне определенный, зависящий от строения аминокислотного радикала. Если на конкретном участке молекулы полипептида группируются аминокислотные остатки с близкими углами вращения по указанным связям, то и формируется однотипная вторичная структура.

В стабилизации вторичной структуры полипептида важную роль играют водородные связи, возникающие между группировками пептидных

связей по следующей схеме: ═N-H.....O=C═

Одна из разновидностей вторичной структуры белка - α-спираль, ко-торая была установлена в 1951 г. Л.Полингом и Р.Кори методом рент-геноструктурного анализа. При формировании α-спирали происходит спи-ралевидное закручивание полипептидной цепи, которое стабилизируется за счет образования водородных связей, возникающих в определённом порядке между NH- и CO-группами пептидных связей, находящихся в соседних витках спирали (рис. 6). NH-группа пептидной связи каждого аминокислотного остатка соединяется водородной связью с CO-группой пептидной связи другого аминокислотного остатка, удалённого в полипеп-тидной цепи от первого на 4 аминокислотных остатка, считая по направ-лению цепи назад.

Водородные связи ориентированы вдоль оси спирали, при этом атомы кислорода, соединенные двойной связью с атомами углерода, об-ращены от атомов углерода по спирали вперед, а атомы водорода, сое-диненные с атомами азота, обращены от атомов азота по спирали назад. Боковые радикалы аминокислот также ориентированы вдоль оси спирали по направлению, противоположному направлению полипептидной цепи (направление полипептидной цепи принято считать от N-конца к C-концу). Внутри α-спирали не образуется полости, так как всё пространство пол-ностью занято группировками пептидных связей и α-углеродных атомов. На поверхности α-спирали находятся боковые радикалы аминокислот, которые могут взаимодействовать как между собой, так и с веществами окружающей среды.

Большинство известных белков образуют α-спираль, у которой спи-ралевидное закручивание полипептидной цепи происходит по направлению движения часовой стрелки. Расчеты показывают, что на каждый виток спирали приходится 3,6 аминокислотных остатка, а ход спирали при удлинении цепи на один аминокислотный остаток равен 0,15 нм. Диаметр условной цилиндрической поверхности, на которой находятся α-углеродные атомы аминокислотных радикалов, составляет 1,01 нм (рис. 7).

Спиралевидная конфигурация вторичной структуры является основ-ной для фибриллярных белков, как например, белка волос, шерсти, перьев, рогов - кератина. Однако длина спирализованных участков глобулярных белков небольшая и обычно составляет несколько витков (3-4 оборота α-спирали). Спирализация полипептидной цепи возникает в том случае, когда на определенном её участке группируются остатки α-аланина, лейцина, фенилаланина, тирозина, триптофана, цистеина, метионина, гистидина, аспарагина, глутамина, валина.

Довольно часто в структуре глобулярных белков встречаются изгибы и петли, поворачивающие пептидную цепь на определенный угол. Наиболее характерной формой такой структуры является так называемый b-изгиб, поворачивающий пептидную цепь на 180˚. Обычно b-изгиб включает 3-4 аминокислотных остатка, ключевым из которых является остаток аминокислоты глицина.



Поделиться:


Последнее изменение этой страницы: 2016-12-13; просмотров: 351; Нарушение авторского права страницы; Мы поможем в написании вашей работы!

infopedia.su Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Обратная связь - 3.144.252.140 (0.073 с.)