Заглавная страница Избранные статьи Случайная статья Познавательные статьи Новые добавления Обратная связь FAQ Написать работу КАТЕГОРИИ: АрхеологияБиология Генетика География Информатика История Логика Маркетинг Математика Менеджмент Механика Педагогика Религия Социология Технологии Физика Философия Финансы Химия Экология ТОП 10 на сайте Приготовление дезинфицирующих растворов различной концентрацииТехника нижней прямой подачи мяча. Франко-прусская война (причины и последствия) Организация работы процедурного кабинета Смысловое и механическое запоминание, их место и роль в усвоении знаний Коммуникативные барьеры и пути их преодоления Обработка изделий медицинского назначения многократного применения Образцы текста публицистического стиля Четыре типа изменения баланса Задачи с ответами для Всероссийской олимпиады по праву Мы поможем в написании ваших работ! ЗНАЕТЕ ЛИ ВЫ?
Влияние общества на человека
Приготовление дезинфицирующих растворов различной концентрации Практические работы по географии для 6 класса Организация работы процедурного кабинета Изменения в неживой природе осенью Уборка процедурного кабинета Сольфеджио. Все правила по сольфеджио Балочные системы. Определение реакций опор и моментов защемления |
Лекция 1. Предмет и методы биохимии. Строение, свойства и биологические функции углеводов и липидов.↑ Стр 1 из 13Следующая ⇒ Содержание книги
Поиск на нашем сайте
Лекция 1. Предмет и методы биохимии. Строение, свойства и биологические функции углеводов и липидов. Аннотация. Излагается история развития биохимии, что она изучает, какие методы используются в биохимии. Даются современные сведения об основных группах углеводов и липидов, их биологических функциях и содержании в растительных и других продуктах. Указывается значение углеводов и липидов в формировании качества растительной продукции. Ключевые слова: биохимия (биологическая химия), метаболизм (обмен веществ организма), углеводы, моносахариды, олигосахариды, полисахариды, сахара, редуцирующие сахара, фуранозная и пиранозная формы моносахаридов, фосфорно-кислые эфиры моносахаридов, альдоновые, альдаровые, уроновые кислоты, липиды, жиры, фосфолипиды, гликолипиды, стероидные липиды, воски, незаменимые жирные кислоты, числа жиров, прогоркание жиров, высыхание растительных масел. Рассматриваемые вопросы: 1. Предмет и методы биохимии.
Модульная единица 1. Введение. Цели и задачи изучения модульной единицы. Ознакомить студентов с историей возникновения и развития биохимии, применением достижений биохимии в различных сферах науки, образования и производства. Предмет и методы биохимии. Биохимия (биологическая химия) изучает химические процессы, происходящие в живых организмах. Важнейшей ее задачей является исследование химического состава растений, микроорганизмов, человека и животных как на молекулярно-клеточном, так и организменном уровнях, а также выяснение строения, функций и механизмов превращения веществ, участвующих в жизнедеятельности организмов. Современную биохимию в полной мере можно считать наукой, главная цель которой – это познание химических основ жизненных явлений. В зависимости от объектов исследования в качестве самостоятельных научных направлений выделяют биохимию микро-организмов, растений, животных и человека, а также техническую биохимию, изучающую химические процессы при хранении и переработке продуктов растительного, животного и микробного проис-хождения. Химические превращения в живых организмах обычно называют биохимическими реакциями или процессами, а образующиеся продукты таких реакций - метаболитами. Вся совокупность биохимических реакций в организме объединяется более общим названием - обмен веществ или метаболизм. Последовательности биохимических реакций, связанных с синтезом и превращениями определенных хи-мических веществ или групп структурно близких соединений, принято называть метаболическими путями. Являясь в своей основе химической наукой, биохимия широко использует химические и физико-химические методы исследований: колориметрический и спектроскопический анализ, различные виды хроматографии, избирательную адсорб-цию, ультрацентрифугирование, электрофорез и изоэлектрофокусировку, рентгено-структурный анализ, электронную микроскопию, ядерный магнитный резонанс, применение радиоактивных и стабильных изотопов и др. Вместе с тем у биохимии выработались и свои специфические методы исследований. Главные особенности этих методов - применение щадящих способов выделения веществ, лиофильное высуши-вание биологического материала и использование защитных добавок с целью сохранения нативных свойств изучаемых веществ. В процессе биохимических исследований очень часто используют искусственные полипептиды и олигонуклеотиды, иммуносорбцию и иммунохими-ческий анализ, а также специфические ферментные препараты, позволяющие направленно изучать тот или иной биохимический процесс. С целью более глубокого познания химических превращений, происходящих в организмах, проводится моделирование биохимических процессов в искусственных системах вне организма, а также разработаны специальные методики для проведения биохимических экспериментов в живых объектах (растения, животные, микроорганизмы). История развития биохимии. Со времен глубокой древности люди в борьбе за свое существование научились использовать многие биохимические процессы, которые были положены в основу различных производств: приготовление хлеба, сыра, вина и пива, дубление кож, ферментация чая и табака, получение кисломолочных и квашеных продуктов, лекарственных, витаминных и других препаратов. Однако механизмы этих процессов длительное время оставались неизвестными. Интенсивное изучение органических веществ было начато в XVIII веке, когда в химическом анализе стали применять количественные методы. Из тканей животных и растений были выделены многие химические вещества и исследователи предпринимали попытки выяснить их свойства и биологические функции в организме. Особенно заметным событием в становлении биохимии как самостоятельной науки следует считать открытие действия ферментов - биологических катализаторов белковой природы, с помощью которых осуществляются химические реакции в живых организмах. Ученый Российской академии наук К.С.Кирхгоф в 1814 году установил, что в прорастающем зерне пшеницы содержится вещество, способное катализировать гидролитическое превращение крахмала в декстрины и сахар. Это вещество впо-следствии назвали амилазой. А в настоящее время известно, что гидролиз крахмала катализирует не один фермент, а целая группа амилаз. Открытие К.С.Кирхгофа положило начало активному исследованию ферментативных реакций и к концу XIX века стало совершенно очевидным, что почти все химические превращения в живых клетках происходят с участием ферментов и благодаря действию этих катализаторов обеспечивается нормальная жизнедея-тельность организмов. В дальнейшем Э.Бухнер (1897 г.) обнаружил в бесклеточных дрожжевых экстрактах вещества, способные катализировать брожение сахара, и таким образом было показано, что в основе микробиологических процессов также находятся определенные химические реакции, которые происходят под воздействием ферментов, выделяемых в окружающую среду микробными клетками. В течение XVIII-XIX веков проводилось изучение многих химических веществ, входящих в состав растительных и животных тканей, определялось их содержание и значение для питания и хозяйственной деятельности человека.В середине XIX века, используя новые аналитические методы, Ю.Либих определил содержание в пищевых продуктах белков, углеводов и жиров, а Н.Э.Лясковский выполнил детальные исследования по оценке содержания белков в зерне пшеницы и количества азота в растительных белках. В 1868 г. швейцарский химик И.Ф.Мишер впервые обнаружил в клеточном ядре дезоксирибонуклеиновую кислоту (ДНК). В 1880 году Н.И.Лунин открыл в молоке вещества, которые впоследствии назвали витаминами. Э.Г.Фишер в 1901 г. сформулировал основные положения полипептидной теории строения белков. Таким образом, к концу XIX века биохимия сформировалась как самостоятельное научное направление, которое называли физиологической химией. Современное название этой науки "биохимия", или "биологическая химия", было дано в начале XX века (К.Нейберг,1903г.) и в дальнейшем оно уже окончательно вошло в перечень фундаментальных биологических наук. Бурное развитие биохимии наблюдалось в течение всего XX века, когда во многих научных и образовательных учреждениях появились биохимические лаборатории и кафедры. В результате развернувшейся исследовательской работы уже проводилось не только изучение строения и функций органических веществ, входящих в состав организмов, но и выяснение механизмов их синтеза, распада и превращений. С использованием современных методов определены структура, химический состав и биологические функции отдельных компонентов живого организма: органов, тканей, клеток, всех клеточных органелл и внутриклеточных мембранных комплексов. Значительные успехи достигнуты в разработке теории ферментативного катализа и регуляции химических процессов в организмах под действием аллостерических ферментов, гормонов и регуляторных белков. В результате углубленного изучения ультраструктуры клетки исследователям удалось сформулировать основные концепции биоэнергетических процессов и биохимических превращений, происходящих с участием клеточных мембран и связанных с ними ферментных комплексов. Достижения биохимии послужили основой для познания молекулярных основ морфогенеза и причин возникновения различных заболеваний, вызванных недостатком витаминов, незаменимых аминокислот и жирных кислот, а также болезней, связанных с недостаточным синтезом ферментов. Биохимиками выполнены фундаментальные исследования по изучению особен-ностей химического состава сельскохозяйственных, технических и лекарственных растений, в результате которых раскрыты механизмы синтеза и превращений основных химических веществ, участвующих в их жизнедеятельности и формировании урожая, а также определяющих качество растительной продукции. В ходе таких исследований установлено влияние природно-климатических факторов, агротехники и химических средств на количественную и качественную изменчивость химического состава рас-тений и растительных продуктов. В основном выяснены бихимические механизмы превращений веществ, происходящих при хранении и переработке сельскохозяйственной продукции.
Образовательное и практическое значение биохимии. Основные направления развития современной биохимии - дальнейшее изучение ферментативных и биоэнергетических процессов; познание регуляторных механизмов на уровне отдельных органов, тканей, клеток и внутриклеточных структур, а также целого организма; разработка биохимических основ управления процессами жизнедеятельности организмов и оптимизации факторов внешней среды. Важное значение имеет также теоретическое обоснование различных прикладных направлений биохимии, связанных с развитием новых технологий получения пищевых продуктов, кормовых и лекарственных препаратов, а также выращивания сельскохозяйственных культур и создания высокопродуктивных генотипов животных, растений и микроорганизмов. В связи с тем, что биохимия изучает молекулярные процессы в организмах, она служит теоретической основой для ряда других наук - физиологии, молекулярной генетики, микробиологии, экологии, биотехнологии, фитопатологии, агрохимии, химической защиты растений. Достижения биохимии находят широкое применение в различных областях хозяйственной деятельности человека: селекции животных, растений и микроорганизмов, медицине, пищевой, парфюмерной и биотехнологи-ческой промышленности,сельском хозяйстве. Сведения по биохимии расширяют наши представления об устройстве окружающего нас мира, и прежде всего мира живой природы, поэтому они имеют важное образовательное значение. Вопросы для повторения: 1. Что изучает биохимия? 2. Как подразделяют биохимию по объектам изучения? 3. Что называют метаболизмом? 4. Какие методы используются в биохимии? 5. Какие открытия послужили началом для развития биохимии? 6. Каковы основные этапы развития биохимии? 7. С какими другими науками тесно связана биохимия? 8. Как используются достижения биохимии в науке, производстве и образовательной деятельности человека? 9. Каковы достижения биохимии по изучению сельскохозяйственных растений? Вопросы для повторения. 1. Каковы структурные особенности стереоизомеров моносахаридов, относящихся к D-или L-ряду? 2. Как образуются циклические формы моносахаридов и в чём состоят различия а - и b-стереоизомеров? 3. Как записывается структура пиранозных и фуранозных форм моносахаридов с помощью формул Хеуорса? 4. Какие образуются конформации молекул у гексоз и пентоз? 5. Как образуются окисленные и восстановленные производные, а также фосфорнокислые эфиры моносахаридов? 6. В чём состоят особенности образования гликозидов, дезокси- и аминопроизводных моносахаридов? 7. Каковы структурные и биологические особенности важнейших альдоз и кетоз? 8. Как образуются молекулы сахарозы, мальтозы, целлобиозы, b-левулина и других олигосахаридов? 9. Из каких моносахаридов и по какому принципу строятся молекулы важнейших полисахаридов - крахмала, полифруктозидов, целлюлозы и гемицеллюлоз, пектиновых веществ, камедей и слизей? 10. Какие биологические функции выполняют указанные выше олигосахариды и полисахариды? 11. Каково содержание сахаров и различных полисахаридов в растительных продуктах? 12. Какие моносахариды и олигосахариды относятся к редуцирующим сахарам? 13. Какое значение имеют углеводы в формировании качества растительных продуктов? 14. Из каких основных компонентов состоит крахмал и каковы строение и свойства этих компонентов? 15. Какие известны разновидности гемицеллюлоз и пектиновых веществ? Вопросы для повторения. 1. Каковы основные группы липидов и какие они выполняют функции в организмах? 2. Из каких жирных кислот и ацилглицеринов образуются молекулы жиров? 3. В чём состоят особенности твёрдых и жидких жиров, а также жиров разных растений? 4. Какие жирные кислоты называют незаменимыми и почему? 5. Для чего и как используются показатели, называемые числами жиров? 6. Какие химические изменения происходят в процессах прогоркания и высыхания жиров? 7. Как классифицируют растительные масла по способности к высыханию? 8. Каковы структурные и функциональные особенности различных групп фосфолипидов и гликолипидов? 9. Какие известны разновидности стероидных липидов? 10. В чём состоят химические и биологические особенности воска у различных видов растений? 11. В каком количестве содержатся различные группы липидов в растительных продуктах? 12. Как влияют липиды на качество растительной продукции? СВОЙСТВА АМИНОКИСЛОТ Чистые препараты аминокислот - белые кристаллические вещества, имеющие высокие температуры плавления (свыше 200˚С). Многие из них хорошо растворяются в воде, за исключением кислот с гидрофобными радикалами. В водном растворе карбоксильные группы аминокислот подвергаются диссоциации с образованием катионов водорода, а азот аминогруппы довольно активно присоединяет катионы водорода, превращаясь в заряженную группировку, в результате чего образуется биполярное соединение: В сильно кислой среде диссоциация карбоксильных групп подавляется высокой концентрацией ионов водорода и в таких условиях заряд молекулы будет положительным, так как он определяется зарядом атома азота, присоединившего протон: При понижении концентрации ионов водорода (увеличение рН) степень диссоциации карбоксильных rpyпп yвeличивaeтcя, а взаимодействие ионов водорода с азотом аминогруппы ослабляется, вследствие чего при определенном значении рН большая часть карбоксильных групп будет диссоциировать и молекула аминокислоты приобретает отрицательный заряд. В щелочной среде под воздействием высокой концентрации гидроксид-ионов происходит связывание катионов водорода, присоединенных к аминогруппе, с образованием воды, в результате чего заряд молекулы будет определяться только зарядом карбоксильной группы: При определенном значении рН среды положительный заряд аминогрупп полностью уравновешивается отрицательным зарядом карбоксильных групп и молекулы аминокислоты становятся элекrpонейтральными. Такое состояние молекулы принято называть изоэлектрической точкой. Если рН среды ниже рН изоэлектрической точки молекулы аминокислоты, то она заряжена положительно за счет заряда аминогруппы и ведет себя в водном растворе как катион. При рН среды выше рН изоэлектрической точки молекула аминокислоты заряжена отрицательно за счет диссоциации карбоксильной группы и ведет себя в водном растворе как анион. Опытным путём определено, что изоэлектрические точки моноаминомонокарбоновых кислот находятся в слабокислой среде(рН 5-6,5), так как кислотные свойства у них выражены несколько сильнее, чем основные. У моноаминодикарбоновых кислот кислотные свойства выражены значительно сильнее, поэтому их изоэлектрические точки находятся в кислой среде (рН 3-3,2). У диаминомонокарбоновых кислот сильнее выражены основные свойства, в связи с чем их изоэлектрические точки смещены в щелочную сторону (рН 9,7-10,8). В связи с тем, что в молекулах аминокислот имеются как кислотные, так и основные группировки, они проявляют амфотерные свойства и могут взаимодействовать и с кислотами, и с основаниями, образуя соответствую-щие соли:
Своими карбоксильными и аминными группировками аминокислоты могут вступать и в другие химические реакции, с помощью которых можно проводить качественный и количественный анализ этих соединений. При взаимодействии аминокислот со спиртами образуются сложные эфиры, которые подвергаются вакуумной перегонке при разных физических параметрах. Благодаря этому можно разделять смеси аминокислот путём получения и фракционной перегонки их эфиров. Аминокислоты довольно легко вступают в реакции с редуцирующими сахарами, образуя при этом темноокрашенные продукты– меланоидины. На первом этапе взаимодействия аминокислоты и моносахарида образуются продукты их разложения: из сахаров – фурфурол или оксиметилфурфурол, а из аминокислоты – альдегид, углекислый газ и аммиак. На следующем этапе фурфурол или оксиметилфурфурол, вступая в соединение с аминокислотами, образуют меланоидины. Интенсивность реакции усиливается при повышенной температуре, которая создается при термической обработке рacтитeльной продукции или её перерaботке (сушка овощей, фруктов и продуктов из картофеля, выпечка хлеба, получение макарон и кондитерских изделий). Аналогичные явления наблюдаются при самосогревании зерна. Промежуточные продукты меланоидинообразования – альдегиды создают специфический запах, характерный для тех или иных пищевых продуктов. Фурфурол имеет запах яблок, оксиметилфурфурол – запах мёда, изовалериановый альдегид, образуемый из аминокислоты лейцина, – запах ржаного хлеба. Конечные продукты реакций взаимодействия аминокислот с редуцирующими сахарами – меланоидины вызывают потемнение растительных продуктов, что ухудшает их товарные свойства. В процессе хлебопечения реакции образования меланоидинов влияют на формирование цвета, вкуса и аромата ржаного и пшеничного хлеба. В результате ферментативного окисления ароматических аминокислот тирозина и фенилаланина также образуются темноокрашенные продукты - меланины, вызывающие потемнение на воздухе очищенных клубней картофеля, измельченных корнеплодов, овощей и фрyкroв. Эти вещества совместно с меланоидинами определяют тёмный цвет ржаного хлеба и вызывают потемнение макарон при сушке. Меланины синтезируются в ходе крнденсации продуктов окисления тирозина и фенилаланина, возникающих под действием фермента тирозиназы (см. стр. …). В целях предотвращения потемнения растительных продуктов при хранении, сушке и переработке применяются технологии выращивания сельскохозяйственных культур, не допускающие накопления в товарной продукции редуцирующих сахаров и свободных аминокислот. СТРОЕНИЕ БЕЛКОВЫХ МОЛЕКУЛ Первый белковый препарат был выделен из пшеничной муки в 1728 году Я.Б.Беккари и назван клейковиной. В 1809-10 г.г. появились первые сведения об элементном составе, а в 1836 г. предложена первая эмпири-ческая формула белков. В дальнейшем довольно активно многими иссле-дователями проводилось изучение продуктов распада белковых веществ и появлялось все больше и больше сведений о том, что основными про-дуктами гидролитического разложения белков являются аминокислоты. К 1899 г. уже было известно 13 аминокислот, большинство из которых были идентифицированы как продукты гидролиза белков. Основополагающий вклад в разработку теории строения белков внесли работы Э.Фишера, который в 1901 г. предположил и затем экспери-ментально обосновал положение о том, что белковые молекулы постро-ены из аминокислот, остатки которых соединены пептидными связями. Образующиеся таким путем полимеры обычно называют полипептидами, а учение о построении белковых молекул из аминокислот, соединенных пептидными связями, - полипептидной теорией строения белков. В образовании пептидной связи участвуют α-аминокислоты, которые взаимодействуют своими аминными и карбоксильными группами, при этом высвобождаются молекулы воды. У диаминомонокарбоновых кислот пептидную связь может образовать только аминогруппа, находящаяся в α-по-ложении, а у моноаминодикарбоновых кислот - карбоксильная группа, имеющая в α-положении аминогруппу. Углеводородные радикалы амино-кислотных остатков, соединенных пептидными связями, остаются в виде боковых радикалов. Так, например, из аланина, аспарагиновой кислоты и лизина образуется трипептид: Название пептида составляется из названий образующих его амино-кислот, при этом аминокислота, имеющая свободную карбоксильную группу, записывается в конце формулировки, а у других аминокислот окончание изменяют на "ил" и их перечисляют в названии пептида в том порядке, в котором они находятся в структурной формуле полученного соединения. В соответствии с этим выше представленный трипептид имеет название - аланиласпарагиллизин. Методом рентгеноструктурного анализа показано, что атомные группировки пептидной связи расположены в одной плоскости, образуя преимущественно транс -конфигурацию относительно связи C-N, которая в значительной мере имеет характер двойной связи, и вращение вокруг этой связи сильно ограничено.
В целом пространственное построение полипептидной цепи можно представить как последовательность плоских структур, образуемых эле-ментами пептидной связи, которые соединены через α-углеродные атомы аминокислотных радикалов. Поскольку связи у α-углеродных атомов не являются двойными, вокруг них возможно вращение расположенных в плоскости пептидной связи группировок. Если поменять порядок соединения аминокислот в пептиде, то мы получим несколько изомеров. Чаще всего в состав белковых полипепти-дов могут входить 100-400 аминокислотных остатков, которые, соединяясь пептидными связямми в определенном порядке, могут давать огромное число изомерных молекул, способных выполнять разнообразные биологи-ческие функции. В общем виде строение полипептида можно выразить следующей формулой: В этой формуле аминокислотные остатки соединены связями -СО-NH-, которые и называют пептидными, а R1, R2, R3...Rn - радикалы амино-кислотных остатков, содержащие различные группировки атомов и обра-зующие боковые ответвления в молекуле полипептида. На противоположных концах полипептидной цепи имеются свобод-ная аминная и свободная карбоксильная группы, по которым определяют направленность полипептида. Аминокислота на конце полипептидной цепи, имеющая свободную аминогруппу в α-положении, называется N-концевой аминокислотой, а аминокислота на противоположном конце полипептида, имеющая свободную карбоксильную группу, не использованную для образования пептидной связи, - C-концевой аминокислотой. Определение N- и C-концевых аминокислот имеет важное значение для выяснения строения белковой молекулы, так как позволяет установить в ней число полипептидных цепей. Большинство известных белков содержат в молекуле более одной полипептидной цепи и этим существенно отличаются от обычных пептидов, имеющих одну полипептидную цепь и более низкую молекулярную массу. Однако чёткую границу между пептидами и белками провести довольно трудно; и те, и другие имеют вполне определенную пространственную структуру и выполняют свою биохимическую функ-цию. Основными критериями следует считать степень полимерности молекулы, обеспечи-вающую ей необходимые коллоидные, осмотические, буферные и другие свойства, характерные для белков, а также способность формировать определённую пространственную структуру. Самая низкая степень полимерности известных белков составляет не менее 50 аминокислотных остатков в одной молекуле. Вместе с тем известны некоторые белки, молекулы которых насчитывают свыше тысячи аминокислотных остатков. Пептиды в различных организмах очень часто синтезируются с по-мощью тех же механизмов, как и белки, и представляют собой важные промежуточные продукты обмена веществ, многие из них выполняют регуляторные функции и относятся к физиологически активным соеди-нениям. Однако известны пептиды, в синтезе которых принимают участие аминокислоты, не входящие в состав белков, они способны образовывать циклические структуры. К таким пептидам относятся антибиотики грами-цидин, циклоспорин, тироцидин и токсины бледной поганки. К пептидам, выполняющим регуляторные функции, относятся многие гормоны человека и животных (окситоцин, вазопрессин, адренокортикотропный гормон и некоторые другие). Из растительных пептидов наиболее хорошо изучен глютатион, структура которого была выяснена в 1945 г. Ф.Гопкинсом. Молекула глю-татиона включает остатки трёх аминокислот - глутаминовой кислоты, цис-теина и глицина. Глицин и цистеин соединены пептидной связью, а цистеин и глутаминовая кислота - псевдопептидной (или изопептидной) связью, которая образуется при взаимодействии аминогруппы цистеина с карбоксильной группой глутаминовой кислоты, не имеющей в α –положе-нии аминогруппы и в составе белковых полипептидов обычно находящейся в составе бокового радикала. H2N-CH-CH2-CH2-CO-NH-CH-CO-NH-CH2-COOH │ │ COOH CH2SH глютатион Высокая биологическая активность глютатиона обусловлена его спо-собностью участвовать в восстановительных реакциях, так как под дей-ствием фермента он может легко отщеплять водород от сульфгидрильной группы (-SH) и переходить в восстановленную форму, образуя димеры, связанные дисульфидными (-S-S-) связями. Схематически образование окисленных димеров глютатиона можно представить следующим образом: фермент R-SH + HS-R ¾¾® R-S-S-R + фермент - H2 Глютатион содержится во всех растительных клетках и оказывает влияние на активность многих ферментов, катализирующих превращения белков. Учитывая высокую биологическую активность многих пептидов, разрабатываются технологии их химического синтеза с целью получения искусственных гормонов, антибиотиков, различных медицинских препа-ратов. Как показывают опыты, путем химического синтеза можно полу-чать полипептидные цепи, содержащие до 100 аминокислотных остатков. Особенно значительные успехи достигнуты в результате сочетания хими-ческого и ферментативного синтезов. Так, например, из природных поли-пептидов путем частичного гидролиза выделяют пептидные фрагменты нужного состава, а затем их соединяют с помощью химических реакций или ферментативного синтеза, получая таким образом биологически активные пептидные препараты. После того, как была сформулирована и экспериментально подтвер-ждена полипептидная теория строения белков, следующим этапом было определение структурных формул белков, показывающих последова-тельность соединения аминокислотных остатков в белковых молекулах. Впервые это удалось выполнить Ф.Сенгеру в 1954 г., применившему новые подходы в химической идентификации концевых аминокислот у различных пептидов, которые могут быть получены при частичном гидролизе полипептидов изучаемого белка. Сопоставление аминокислотных последовательностей перекрываю-щихся фрагментов полипептидных цепей гормона поджелудочной железы- инсулина позволило ему с достаточно высокой точностью определить последовательность соединения аминокислотных остатков в молекуле этого белка. Как оказалось, молекула инсулина состоит из двух полипептидных цепей, в одной из которых содержится 30 аминокислотных остатков, в другой - 21. Полипептидные цепи в двух положениях соединены дисуль-фидными связями, которые образуются при взаимодействии сульфгид-рильных групп (-SH) цистеиновых радикалов точно по такому же меха-низму, как у димеров глютатиона. Положение этих цистеиновых остатков в полипептидных цепях инсулина показано на рисунке 5. Следует учитывать, что нумерацию аминокислотных остатков в по-липептидах принято исчислять в направлении от N-концевой аминокислоты к С-концевой. В короткой цепи инсулина образуется еще одна дисульфидная связь между остатками цистеина в 6-м и 11-м положениях. В длинной цепи N-концевая аминокислота - фенилаланин, С-концевая аминокислота - аланин; в короткой цепи N-концевая аминокислота – глицин, С-концевая - аспарагин. Таким образом, на примере инсулина мы видим, что молекула белка может быть построена не из одного полипептида и разные полипептидные цепи в молекуле белка могут соединяться дисульфидными связями за счёт цистеиновых остатков. Вслед за инсулином были расшифрованы аминокислотные последо-вательности различных пептидов и белков: окситоцина, вазопрессина, РНК-полимеразы, пепсина, трипсина, лизоцима, цитохромов, гемоглоби-на, папаина и многих других полиаминокислотных соединений. Уже к 1975 г. насчитывалось 600 белков с известными аминокислотными после-довательностями, к 1985 г. - свыше 2500. В настоящее время работа по анализу аминокислотных последовательностей в белках почти полностью автоматизирована и число таких белков уже значительно превышает 20 тысяч. ПЕРВИЧНАЯ СТРУКТУРА БЕЛКОВ. Последовательность соедине-ния аминокислот в полипептидных цепях белковой молекулы принято называть первичной структурой белка. Она определяется последователь-ностью нуклеотидов конкретного участка ДНК, кодирующего данный полипептид и называемого геном. Замена даже одной аминокислоты в структуре белка может сущест-венно изменить его функцию. Поэтому полипептиды можно рассматривать как "отпечатки" кодирующих их генов и использовать для распознавания генотипов, а также установления между ними генетического родства. Так, например, в короткой полипептидной цепи инсулина человека в положениях 8, 9 и 10 находится последовательность аминокислот Thr-Ser-Ile, в инсулине овцы - Ala-Gly-Val, в инсулине коровы - Ala-Ser-Val, в инсулине собаки - Thr-Ser-Ile, то есть такая же аминокислотная последовательность, как и у человека, что свидетельствует о меньшем филогенетическом различии между этими организмами. В других исследованиях, связанных с изучением аномальных форм гемоглобина, установлено, что во многих случаях замена в одной из его полипептидных цепей хотя бы одной аминокислоты на другую вызывает нарушение физиологической функции этого белка, которое приводит к серьезным клиническим последствиям для организма человека. ВТОРИЧНАЯ СТРУКТУРА БЕЛКОВ. Полипептидная цепь, вклю-чающая последовательность аминокислотных остатков, характерную для данного белка, формирует вполне определённую пространственную структуру, которую обычно называют конформацией белковой молекулы. Пространственное же строение каждого отдельного участка полипептид-ной цепи представляет собой вторичную структуру белка. Формирование вторичной структуры белковых молекул зависит от физико-химических параметров аминокислотных остатков и их последова-тельности в полипептидной цепи. Как уже было отмечено, атомные груп-пировки пептидной связи располагаются в одной плоскости, а каждая такая плоскостная структура соединяется с соседней через α-углеродные атомы аминокислотных радикалов ковалентными связями, вокруг которых возможно вращение плоскостных структур пептидных связей. Угол пово-рота по каждой из этих связей для каждого аминокислотного остатка вполне определенный, зависящий от строения аминокислотного радикала. Если на конкретном участке молекулы полипептида группируются аминокислотные остатки с близкими углами вращения по указанным связям, то и формируется однотипная вторичная структура. В стабилизации вторичной структуры полипептида важную роль играют водородные связи, возникающие между группировками пептидных связей по следующей схеме: ═N-H.....O=C═ Одна из разновидностей вторичной структуры белка - α-спираль, ко-торая была установлена в 1951 г. Л.Полингом и Р.Кори методом рент-геноструктурного анализа. При формировании α-спирали происходит спи-ралевидное закручивание полипептидной цепи, которое стабилизируется за счет образования водородных связей, возникающих в определённом порядке между NH- и CO-группами пептидных связей, находящихся в соседних витках спирали (рис. 6). NH-группа пептидной связи каждого аминокислотного остатка соединяется водородной связью с CO-группой пептидной связи другого аминокислотного остатка, удалённого в полипеп-тидной цепи от первого на 4 аминокислотных остатка, считая по направ-лению цепи назад. Водородные связи ориентированы вдоль оси спирали, при этом атомы кислорода, соединенные двойной связью с атомами углерода, об-ращены от атомов углерода по спирали вперед, а атомы водорода, сое-диненные с атомами азота, обращены от атомов азота по спирали назад. Боковые радикалы аминокислот также ориентированы вдоль оси спирали по направлению, противоположному направлению полипептидной цепи (направление полипептидной цепи принято считать от N-конца к C-концу). Внутри α-спирали не образуется полости, так как всё пространство пол-ностью занято группировками пептидных связей и α-углеродных атомов. На поверхности α-спирали находятся боковые радикалы аминокислот, которые могут взаимодействовать как между собой, так и с веществами окружающей среды. Большинство известных белков образуют α-спираль, у которой спи-ралевидное закручивание полипептидной цепи происходит по направлению движения часовой стрелки. Расчеты показывают, что на каждый виток спирали приходится 3,6 аминокислотных остатка, а ход спирали при удлинении цепи на один аминокислотный остаток равен 0,15 нм. Диаметр условной цилиндрической поверхности, на которой находятся α-углеродные атомы аминокислотных радикалов, составляет 1,01 нм (рис. 7). Спиралевидная конфигурация вторичной структуры является основ-ной для фибриллярных белков, как например, белка волос, шерсти, перьев, рогов - кератина. Однако длина спирализованных участков глобулярных белков небольшая и обычно составляет несколько витков (3-4 оборота α-спирали). Спирализация полипептидной цепи возникает в том случае, когда на определенном её участке группируются остатки α-аланина, лейцина, фенилаланина, тирозина, триптофана, цистеина, метионина, гистидина, аспарагина, глутамина, валина. Довольно часто в структуре глобулярных белков встречаются изгибы и петли, поворачивающие пептидную цепь на определенный угол. Наиболее характерной формой такой структуры является так называемый b-изгиб, поворачивающий пептидную цепь на 180˚. Обычно b-изгиб включает 3-4 аминокислотных остатка, ключевым из которых является остаток аминокислоты глицина. Остатки аминокислоты пролина вызывают излом образующейся α-спирали с отклонением от оси спирали на угол 20˚-30˚. Это объясняется тем, что азот пролина, входящий в структуру пептидных группировок, не связан с атомом водорода и поэтому не образ
|
||||
Последнее изменение этой страницы: 2016-12-13; просмотров: 398; Нарушение авторского права страницы; Мы поможем в написании вашей работы! infopedia.su Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Обратная связь - 3.145.32.238 (0.012 с.) |