Заглавная страница Избранные статьи Случайная статья Познавательные статьи Новые добавления Обратная связь FAQ Написать работу КАТЕГОРИИ: АрхеологияБиология Генетика География Информатика История Логика Маркетинг Математика Менеджмент Механика Педагогика Религия Социология Технологии Физика Философия Финансы Химия Экология ТОП 10 на сайте Приготовление дезинфицирующих растворов различной концентрацииТехника нижней прямой подачи мяча. Франко-прусская война (причины и последствия) Организация работы процедурного кабинета Смысловое и механическое запоминание, их место и роль в усвоении знаний Коммуникативные барьеры и пути их преодоления Обработка изделий медицинского назначения многократного применения Образцы текста публицистического стиля Четыре типа изменения баланса Задачи с ответами для Всероссийской олимпиады по праву Мы поможем в написании ваших работ! ЗНАЕТЕ ЛИ ВЫ?
Влияние общества на человека
Приготовление дезинфицирующих растворов различной концентрации Практические работы по географии для 6 класса Организация работы процедурного кабинета Изменения в неживой природе осенью Уборка процедурного кабинета Сольфеджио. Все правила по сольфеджио Балочные системы. Определение реакций опор и моментов защемления |
Строение, свойства и биологические функции жиров.Содержание книги
Поиск на нашем сайте
По химической природе жиры - это смесь сложных эфиров глицерина и высокомолекулярных карбоновых кислот, называемых жирными кис-лотами. Такие эфиры называют ацилглицеринами. Схематически строение ацилглицеринов можно выразить в виде следующей формулы: СН₂-О-СО-R₁ | СН-О-СО-R₂ В этой формуле R1, R2 и R3 – радикалы жирных | кислот. СН₂-О-СО-R₃
Жиры в основном представлены триацилглицеринами, у которых к глицерину присоединены сложноэфирной связью три радикала чаще всего разных, а в одельных случаях одинаковых жирных кислот. Однако в небольшом количестве в жире могут содержаться эфиры глицерина, в молекулах которых имеются только два или даже один остаток жирной кислоты, их соответственно называют диацилглицеринами и моноацил-глицеринами. Молекулы жирных кислот образуют вытянутую углеводородную цепь с концевой карбоксильной группой. У растений, человека и животных они обычно имеют чётное число углеродных атомов. Однако в клетках микроорганизмов могут синтезироваться жирные кислоты с нечётным числом атомов углерода, а в составе некоторых разновидностей липидов бактерий, птиц и растений имеются жирные кислоты с боковыми ответвлениями угродной цепи. Животные жиры в основном построены из высокомолекулярных насыщенных карбоновых кислот, имеющих высокие температуры плавления (40-80ºC). В связи с этим животные жиры при обычной температуре имеют твёрдую консистенцию. В жирах же растений преобладают ненасыщенные кислоты, имеющие более низкие температуры плавления, в связи с чем они существуют в жидком виде и их называют маслами. Из насыщенных кислот в составе жиров наиболее часто встречаются пальмитиновая и стеариновая кислоты. В жирах тропических растений довольно много лауриновой и миристиновой кислот, а в масле арахиса ـ арахиновой кислоты. Их структурные формулы следующие: Ненасыщенные жирные кислоты содержат от одной до четырёх двойных связей, которые чаще всего распределяются в углеводородном радикале между концевой метильной группой и одним из углеродных атомов в центральной его части. Между группировками атомов с двойными связями находятся свободные метиленовые группы. Из ненасыщенных кислот наиболее распространены в растительных жирах олеиновая, линолевая, линоленовая, а в клетках печени животных и человека содержится арахидоновая кислота. Они имеют следующие структурные формулы: Ненасыщенные жирные кислоты, содержащиеся в природных жирах, имеют цис -конфигурацию и только в таком состоянии способны выполнять свои биологические фунцции. Ниже показано простран-ственное строение цис -изомеров линолевой и линоленовой кислот: Организмы человека и животных не способны синтезировать ненасыщенные жирные кислоты с двумя и больше двойными связями (полиненасыщенные кислоты), хотя они необходимы для жизнедеятельности этих организмов и должны в обязательном порядке входить в состав пищи человека или кормов животных. В связи с этим указанные жирные кислоты принято называть незаменимыми. Незаменимые жирные кислоты способствуют выведению из организма холестерина и повышают эластичность кровеносных сосудов, ослабляя таким образом развитие атеросклероза. В связи с тем, что полиненасыщенные кислоты участвуют в процессах обмена жиров, локализованных в подкожной клетчатке, при их недостатке появляются признаки кожных заболеваний - сухость кожи, образование экзем. Для обеспечения организма незаменимыми жирными кислотами человеку необходимо в сутки потреблять 20-25 г растительного масла. Ненасыщенные жирные кислоты различают также по положению двойных связей на ω-конце углеводородной цепи (на противоположном конце от карбоксильной группы). В растительных жирах преобладают ω-6 кислоты, у которых двойные связи начинаются от шестого углеродного атома на ω-конце их молекул. В жирах животного происхождения (особенно в молоке и рыбе) содержится много ω-3 кислот, которые оказывают наиболее благоприятное действие на организм человека. В маслах определённых видов растений могут содержаться специ-фические жирные кислоты, характерные только для этих генотипов. Так, например, в касторовом масле (из семян клещевины) довольно много рицинолевой кислоты, имеющей в составе углеводородного радикала одну двойную связь и гидроксильную группу: СН3(СН2)5СН(ОН)СН2СН=СН(СН2)7СООН В маслах из семян растений семейства капустные (рапс, горчица, рыжик) содержится мононенасыщенная эруковая кислота: СН3(СН2)7СН=СН(СН2)11СООН Ведётся направленная селекция этих растений с целью понижения в масле содержания эруковой кислоты. Каждый вид растений имеет совершенно определённый набор жирных кислот в составе масла. Близкие между собой генотипы почти не отличаются по составу масла. В то же время удельное соотношение жирных кислот в масле одного и того же вида растений существенно изменяется в зависимости от фазы развития и условий внешней среды. Жирные кислоты, входящие в состав масла, образуют с глицерином смесь эфиров, которая включает разные по кислотному составу ацилглицерины. Они могут быть однокислотные, если содержат остатки одной кислоты, или разнокислотные с разными комбинациями кислотных радикалов. Так, например, в оливковом масле, в котором преобладает олеиновая кислота, довольно много содержится триолеина, а в касторовом масле с участием рицинолевой кислоты образуется однокислотный ацилглицерин - тририцинолеин. Во многих растительных маслах содер-жатся ацилглицерины, образующиеся из пальмитиновой, олеиновой и линолевой кислот - пальмитинодиолеин и пальмитиноолеинолинолеин. В результате различных комбинаций с участием нескольких жирных кислот формируется довольно большое разнообразие триацилглицеринов, характерных для каждого вида растений. В нерафинированном растительном масле, кроме ацилглицеринов, в растворенном состоянии находятся свободные жирные кислоты и фос-фолипиды (1-2%), стероидные липиды (0,1-1,5%), жирорастворимые ви-тамины и пигменты. Вследствие того, что в большинстве растительных масел растворены каротиноиды, они окрашены в желтый цвет. Для получения кулинарных жиров, а также производства мыла разработаны промышленные способы превращения растительных масел в твердые жиры. С этой целью проводится гидрогенизация жидких растительных жиров в присутствии катализаторов, при которой в результате присоединения водорода происходит превращение в составе ацилглицеринов ненасыщенных кислот в насыщенные, вследствие чего жир приобретает твердую консистенцию. Для характеристики свойств жира применяют показатели, называемые числами жиров; наиболее важное значение имеют кислотное число, йодное число и число омыления. При указании значений этих чисел размерность обычно не записывается. Кислотное число выражается количеством миллиграммов гидроксида калия, необходимого для нейтрализации свободных жирных кислот, содержащихся в 1 г жира. Оно характеризует содержание свободных жирных кислот в жире. В масле из созревших семян концентрация свободных кислот минимальная, поэтому кислотное число такого масла имеет низкое значение (не более 1-2). Однако масло из недозревших семян содержит много свободных жирных кислот и его кислотное число увеличивается. Ещё большее увеличение кислотного числа наблюдается в маслах из проростающих семян, в которых интенсивно происходит гидролиз ацилглицеринов с образованием глицерина и свободных жирных кислот. Если кислотное число растительного масла превышает 5, то оно не может использоваться на пищевые цели и должно быть подвержено дополнительной обработке. Йодное число - это количество граммов йода, способное связываться со 100 г жира. Поскольку йод присоединяется к жирам при разрыве двойных связей в радикалах ненасыщенных жирных кислот, этот показатель характеризует степень непредельности ацилглицеринов. Чем больше двойных связей в кислотных остатках, тем выше йодное число жира. Йодные числа животных жиров, содержащих остатки насыщенных кислот, имеют низкие значения (30-70). Растительные жиры, образованные главным образом из ненасыщенных кислот, отличаются более высокими йодными числами (80-180). Число омыления - количество миллиграммов гидроксида калия, необ- ходимое для нейтрализации свободных и связанных в составе ацилглицеринов жирных кислот, содержащихся в 1 г жира. Оно характеризует среднюю величину молекулярной массы жирных кислот и образующихся из них ацилглицеринов, входящих в состав жира. Ацилглицерины, включающие радикалы низкомолекулярных жирных кислот, имеют более высокое число омыления. Число омыления животных жиров и жиров растений умеренных широт обычно находится в пределах 170-200, а жиров тропических растений - 200-250. ПРОГОРКАНИЕ ЖИРОВ. При длительном хранении жиры под воздействием ряда факторов подвергаются прогорканию, вследствие чего они приобретают неприятный вкус и запах. Одной из причин прогоркания растительных масел и содержащих их продуктов является действие ферментов - липаз и липоксигеназ. Под действием липаз происходит гидролиз сложноэфирных связей ацилглицеринов с образованием глицерина и свободных жирных кислот. При этом некоторые жирные кислоты имеют неприятный вкус и запах. Фермент липоксигеназа катализирует окисление свободных жирных кислот, превращая их в гидроперекиси: Гидроперекиси, в свою очередь, как сильные окислители, подвергают жирные кислоты дальнейшему окислению с образованием альдегидов и кетонов, обладающих неприятным вкусом и запахом, характерным для процесса прогоркания жиров. Может также происходить неферментативное прогоркание жиров, связанное с воздействием на них влаги, света и кислорода воздуха. На первом этапе жир подвергается гидролизу, а затем ненасыщенные жирные кислоты окисляются кислородом воздуха с образованием перекисей: Затем перекиси подвергаются разложению, образуя низкомолекулярные кислоты, а также альдегиды и кетоны с неприятным запахом. Процесс прогоркания жиров могут также инициировать продукты жизнедеятельности микроорганизмов. Для замедления окислительного прогоркания растительных масел к ним добавляют вещества - антиокислители, предохраняющие их от окисления. В растительном масле содержится также природный антиокислитель - токоферол (витамин E). ВЫСЫХАНИЕ МАСЕЛ. Под действием кислорода происходит также высыхание жиров, имеющих в своем составе радикалы полиненасыщенных жирных кислот. В процессе окисления этих кислот происходит их деградация по двойным связям с образованием углекислого газа, воды и летучих альдегидов. Одновременно происходит полимеризация масел. Окисляющийся жир постепенно густеет на воздухе и образует эластичную пленку, которая не растворяется в органических растворителях и устойчива к различным внешним воздействиям. Эти свойства растительных жиров используются для приготовления олифы, лаков и красок. По способности к высыханию и в зависимости от состава жирных кислот растительные масла разделяют на четыре группы. Хорошо высыхающие масла имеют высокое содержание полиненасы- щенных жирных кислот и характеризуются высокими йодными числами (140-180). Их используют как сырье для лакокрасочной промышленности. К таким маслам относятся льняное, конопляное, тунговое, перилловое. Образующаяся при их высыхании пленка не растрескивается под воздействием влаги и солнечных лучей и сохраняет эластичность. Слабо высыхающие масла имеют йодные числа в пределах 100-130. Образующаяся при их высыхании пленка растрескивается на воздухе. К этой группе относятся пищевые масла - подсолнечное, соевое, хлопковое, оливковое, горчичное, рапсовое, кукурузное и др. Невысыхающие масла - касторовое, арахисовое. Они имеют низкие йодные числа (80-100) и содержат в своем составе специфические жирные кислоты (рицинолевую, арахиновую), определяющие их невысыхаемость на воздухе. Эти масла находят применение в медицине, а также в технике для приготовления невысыхающих смазочных материалов. Твёрдые растительные масла содержат много насыщенных кислот, определяющих их твёрдую консистенцию. К твёрдым относятся масла многих тропических растений - пальмовое, кокосовое, масло бобов какао и др. Селекционерами совместно с генетиками и биохимиками проводятся работы по созданию новых сортов масличных культур с повышенным накоплением масла и заданным составом жирных кислот. Жиры обладают высокой энергетической ценностью и поэтому ис-пользуются живыми организмами в качестве запасных веществ. При их окислении выделяется значительно больше энергии в расчёте на единицу массы, чем при окислении углеводов или белков. Определено, что энергетическая ценность 1 г жира составляет в среднем 39 кДж энергии, углеводов - 17-20 кДж, белков - 22-24 кДж. В результате изучения химического состава растений выяснено, что более чем у 90% растительных видов основными запасными веществами семян являются жиры. Следует также учитывать, что при окислении жиров по сравнению с белками и углеводами выделяется значительно больше и воды, которая имеет важное биологическое значение для организмов. Для оценки накопления жиров в растительных продуктах очень часто используют показатель - сырой жир, который выражает общее содержание липидов, переходящих при экстракции в растворитель – диэтиловый эфир. В сыром жире основной липидный компонент – это собственно жир, однако в определенном количестве в экстракт переходят и другие фракции липидов, которые находятся в несвязанном состоянии.
|
||||
Последнее изменение этой страницы: 2016-12-13; просмотров: 451; Нарушение авторского права страницы; Мы поможем в написании вашей работы! infopedia.su Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Обратная связь - 18.118.33.239 (0.007 с.) |