Заглавная страница Избранные статьи Случайная статья Познавательные статьи Новые добавления Обратная связь FAQ Написать работу КАТЕГОРИИ: АрхеологияБиология Генетика География Информатика История Логика Маркетинг Математика Менеджмент Механика Педагогика Религия Социология Технологии Физика Философия Финансы Химия Экология ТОП 10 на сайте Приготовление дезинфицирующих растворов различной концентрацииТехника нижней прямой подачи мяча. Франко-прусская война (причины и последствия) Организация работы процедурного кабинета Смысловое и механическое запоминание, их место и роль в усвоении знаний Коммуникативные барьеры и пути их преодоления Обработка изделий медицинского назначения многократного применения Образцы текста публицистического стиля Четыре типа изменения баланса Задачи с ответами для Всероссийской олимпиады по праву Мы поможем в написании ваших работ! ЗНАЕТЕ ЛИ ВЫ?
Влияние общества на человека
Приготовление дезинфицирующих растворов различной концентрации Практические работы по географии для 6 класса Организация работы процедурного кабинета Изменения в неживой природе осенью Уборка процедурного кабинета Сольфеджио. Все правила по сольфеджио Балочные системы. Определение реакций опор и моментов защемления |
Законы распределения отдельных компонент, входящих в систему. Условные законы распределения.Содержание книги
Поиск на нашем сайте
Зная закон распределения системы двух случайных величин, можно всегда определить законы распределения отдельных компонент (маргинальные законы распределения), входящих в систему.
Выразим теперь маргинальные плотности распределения каждой из величин, входящих в систему, через плотность распределения системы.
дифференцируя по х соотношение (5.4.2), получим выражение для плотности распределения величины X:
Аналогично
Таким образом, для того чтобы получить плотность распределения одной из величин, входящих в систему, нужно плотность совместного распределения системы проинтегрировать в бесконечных пределах по аргументу, соответствующему другой случайной величине. Зная закон распределения системы (заданный в виде функции распределения или плотности распределения), можно найти законы распределения отдельных величин, входящих в систему. Естественно, возникает вопрос об обратной задаче: нельзя ли по маргинальным законам распределения отдельных величин, входящих в систему, восстановить закон распределения системы? Оказывается, что в общем случае этого сделать нельзя, так как неизвестна зависимость между случайными компонентами. Эта зависимость может быть охарактеризована с помощью условных законов распределения. Определение 1. Условным законом распределения величины X, входящей в систему (X,Y), называется ее закон распределения, определенный при условии, что другая случайная величина Y приняла значение у. Условная функция распределения, обозначается F(x|y), условная плотность распределения f(x|y). Чтобы усвоить понятие условного закона распределения, рассмотрим пример. Система случайных величин L и Q представляет собой длину и вес осколка снаряда. Пусть нас интересует длина осколка L безотносительно к его весу; это есть случайная величина, подчиненная закону распределения с плотностью f1(l). Этот закон распределения мы можем исследовать, рассматривая все без исключения, осколки и оценивая их только по длине; f1(l) есть безусловный закон распределения длины осколка. Однако нас может интересовать и закон распределения длины осколка вполне определенного веса, например 10 г. Для того чтобы его определить, мы будем исследовать не все осколки, а только определенную весовую группу, в которой вес приблизительно равен 10 г, и получим условный закон распределения длины осколка при весе 10 г с плотностью f1(l|q) при q = 10. Этот условный закон распределения вообще отличается от безусловного f1(l); очевидно, более тяжелые осколки должны в среднем обладать и большей длиной; следовательно, условный закон распределения длины осколка существенно зависит от веса q. Зная закон распределения одной из величин, входящих в систему, и условный закон распределения второй, можно определить закон распределения системы. Для этого воспользуемся понятием элемента вероятности. Рассмотрим прилежащий к точке (х,у) элементарный прямоугольник Rd со сторонами dx,dy (рис. 5.4.1). Вероятность попадания в этот прямоугольник — элемент вероятности f(x,у)dxdy — равна вероятности одновременного попадания случайной точки (X,Y) в элементарную полосу I, опирающуюся на отрезок dx, и в полосу II, опирающуюся на отрезок dy: Вероятность произведения этих двух событий, по теореме умножения вероятностей, равна вероятности попадания в элементарную полосу I, умноженной на условную вероятность попадания в элементарную полосу II, вычисленную при условии, что первое событие имело место. Это условие в пределе равносильно условию X = х; следовательно, откуда
т. е. плотность распределения системы двух величин равна плотности распределения одной из величин, входящих в систему, умноженной на условную плотность распределения другой величины, вычисленную при условии, что первая величина приняла заданное значение. Формулу (5.4.5) часто называют теоремой умножения законов распределения. Эта теорема в схеме случайных величин аналогична теореме умножения вероятностей в схеме событий. Очевидно, формуле (5.4.5) можно придать другой вид, если задать значение не величины X, а величины Y:,
Разрешая формулы (5.4.5) и (5.4.6) относительно f(y|x) и f(x|y), получим выражения условных законов распределения через безусловные:
или
|
||||||||||||||||||||||||
Последнее изменение этой страницы: 2016-09-19; просмотров: 795; Нарушение авторского права страницы; Мы поможем в написании вашей работы! infopedia.su Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Обратная связь - 18.117.151.127 (0.007 с.) |