Биосинтез высших жирных кислот в тканях. Биосинтез липидов в печени и жировой ткани. 


Мы поможем в написании ваших работ!



ЗНАЕТЕ ЛИ ВЫ?

Биосинтез высших жирных кислот в тканях. Биосинтез липидов в печени и жировой ткани.

Поиск

Биосинтез жирных кислот наиболее активно происходит в цитозоле клеток печени, кишечника, жировой ткани в состоянии покоя или после еды.

Условно можно выделить 4 этапа биосинтеза:

1. Образование ацетил-SКоА из глюкозы, других моносахаров или кетогенных аминокислот.

2. Перенос ацетил-SКоА из митохондрий в цитозоль:

может быть в комплексе с карнитином, подобно тому как переносятся внутрь митохондрии высшие жирные кислоты, но здесь транспорт идет в другом направлении,обычно в составе лимонной кислоты, образующейся в первой реакции ЦТК.Поступающий из митохондрий цитрат в цитозоле расщепляется АТФ-цитрат-лиазой до оксалоацетата и ацетил-SКоА.Оксалоацетат в дальнейшем восстанавливается до малата, и последний либо переходит в митохондрии (малат-аспартатный челнок), либо декарбоксилируется в пируват малик-ферментом ("яблочный" фермент).

3. Образование малонил-SКоА из ацетил-SКоА.Карбоксилирование ацетил-SКоА катализируется ацетил-SКоА-карбоксилазой, мульферментным комплексом из трех ферментов.

4. Синтез пальмитиновой кислоты.

Осуществляется мультиферментным комплексом "синтаза жирных кислот" (синонимпальмитатсинтаза) в состав которого входит 6 ферментов и ацил-переносящий белок (АПБ).

Ацил-переносящий белок включает производное пантотеновой кислоты – 6-фосфопантетеин (ФП), имеющий HS-группу, подобно HS-КоА. Один их ферментов комплекса, 3-кетоацил-синтаза, также имеет HS-группу в составе цистеина. Взаимодействие этих групп обусловливает начало и продолжение биосинтеза жирной кислоты, а именно пальмитиновой кислоты. Для реакций синтеза необходим НАДФН.

В первых двух реакциях последовательно присоединяются малонил-SКоА к фосфопантетеину ацил-переносящего белка и ацетил-SКоА к цистеину 3-кетоацилсинтазы.3-Кетоацилсинтаза катализирует третью реакцию – перенос ацетильной группы на С2малонила с отщеплением карбоксильной группы.Далее кетогруппа в реакциях восстановления (3-кетоацил-редуктаза), дегидратации (дегидратаза) и опять восстановления (еноил-редуктаза) превращается в метиленовую с образованием насыщенного ацила, связанного с фосфопантетеином.

Ацилтрансфераза переносит полученный ацил на цистеин 3-кетоацил-синтазы, к фосфопантетеину присоединяется малонил-SКоА и цикл повторяется 7 раз до образования остатка пальмитиновой кислоты. После этого пальмитиновая кислота отщепляется шестым ферментом комплекса тиоэстеразой.

Синтезированная пальмитиновая кислота при необходимости поступает в эндоплазматический ретикулум или в митохондрии. Здесь с участием малонил-S-КоА иНАДФН цепь удлиняется до С18 или С20.Удлиняться могут и ненасыщенные жирные кислоты (олеиновая, линолевая, линоленовая) с образованием производных эйкозановой кислоты (С20). Но двойная связь животными клетками вводится не далее 9 атома углерода, поэтому ω3- и ω6-полиненасыщенные жирные кислоты синтезируются только из соответствующих предшественников.

Например, арахидоновая кислота может образоваться в клетке только при наличии линоленовой или линолевой кислот. При этом линолевая кислота (18:2) дегидрируется до γ-линоленовой (18:3) и удлиняется до эйкозотриеновой кислоты (20:3), последняя далее вновь дегидрируется до арахидоновой кислоты (20:4). Так формируются жирные кислоты ω6 ряда.

68. Холестерол. Его химическое строение, биосинтез и биологическая роль. Причины

Холестерол относится к группе соединений, имеющих в своей основе циклопентан-пергидрофенантреновое кольцо, и является ненасыщенным спиртом.

Синтез холестерола в организме составляет примерно 0,5-0,8 г/сут, при этом половина образуется в печени, около 15% в кишечнике, оставшаяся часть в любых клетках, не утративших ядро. Таким образом, все клетки организма способны синтезировать холестерол.

Из пищевых продуктов наиболее богаты холестеролом (в пересчете на 100 г продукта) сметана (0,002 г), сливочное масло (0,03 г), яйца (0,18 г), говяжья печень (0,44 г). В целом за сутки с обычным рационом поступает около 0,4 г.

Выведение холестерола из организма происходит в основном через кишечник:с фекалиями в виде холестерола, поступающего с желчью, и образованных микрофлорой нейтральных стеролов (до 0,5 г/сут); в виде желчных кислот (до 0,5 г/сут); около 0,1 г удаляется в составе слущивающегося эпителия кожи и кожного сала,

примерно 0,1 г превращается в стероидные гормоны (половые, глюкокортикоиды,минералокортикоиды) и после их деградации выводится с мочой.

Функции холестерола

1. Структурная – входит в состав мембран, обуславливая их вязкость и жесткость.

2. Связывание и транспорт полиненасыщенных жирных кислот между органами и тканями в составе липопротеинов низкой и высокой плотности. Примерно 1/4 часть всего холестерола в организме этерифицирована олеиновой кислотой и полиненасыщенными жирными кислотами. В плазме крови соотношение эфиров холестерола к свободному холестеролу составляет 2:1.

3. Является предшественником желчных кислот, стероидных гормонов (кортизола,альдостерона, половых гормонов) и витамина D.

Биосинтез холестерола происходит в эндоплазматическом ретикулуме. Источником всех атомов углерода в молекуле является ацетил-SКоА, поступающий сюда из митохондрий в составе цитрата, также как при синтезе жирных кислот. При биосинтезе холестерола затрачивается 18 молекул АТФ и 13 молекул НАДФН.Образование холестерола идет более чем в 30 реакциях, которые можно сгруппировать в несколько этапов.

1. Синтез мевалоновой кислоты.

2. Синтез изопентенилдифосфата. На этом этапе три остатка фосфат присоединяются к мевалоновой кислоте, затем она декарбоксилируется и дегидрируется.

3. После объединения трех молекул изопентенилдифосфата синтезируетсяфарнезилдифосфат.

4. Синтез сквалена происходит присвязывания двух остатков фарнезилдифосфата.

5. После сложных реакций линейный сквален циклизуется в ланостерол.

6. Удаление лишних метильных групп, восстановление и изомеризация молекулы приводит к появлению холестерола.

Транспорт холестерола и его эфиров осуществляется липопротеинами низкой и высокой плотности.

Липопротеины высокой плотности - образуются в печени de novo, в плазме крови при распаде хиломикронов, некоторое количество в стенке кишечника; в составе частицы примерно половину занимают белки, еще четверть фосфолипиды, остальное холестерин и ТАГ (50% белка, 7% ТАГ, 13% эфиров ХС, 5% свободного ХС, 25% ФЛ); основным апобелком является апо А1, содержат апоЕ и апоСII.

Функция: Транспорт свободного ХС от тканей к печени.Фосфолипиды ЛПВП являются источником полиеновых кислот для синтеза клеточных фосфолипидов и эйкозаноидов.

Метаболизм

1. Синтезированный в печени ЛПВП (насцентный или первичный) содержит в основном фосфолипиды и апобелки. Остальные липидные компоненты накапливаются в нем по мере метаболизма в плазме крови.

2. В ЛПВП активно протекает реакция при участии лецитин:холестерол-ацилтрансферазы(ЛХАТ-реакция). В этой реакции остаток полиненасыщенной жирной кислоты переносится от ФХ на свободный ХС с образованием лизофосфатидилхолина (лФХ) и эфиров ХС.

3. Взаимодействует с ЛПНП и ЛПОНП, которые являются источником свободного ХС для ЛХАТ-реакции, в обмен ЛПВП отдают эфиры ХС.

4. Взаимодействуя с ЛПОНП и ХМ, получают ТАГ и отдают им апоЕ- и апоСII-белки.

5. При посредстве специфических транспортных белков получают свободный ХС из клеточных мембран.

6. Взаимодействует с мембранами клеток, отдает часть фосфолипидной оболочки, доставляя таким образом полиеновые жирные кислоты в клетки.

7. Накопление свободного ХС, ТАГ, лизоФХ и утрата фосфолипидной оболочки преобразует ЛПВП3 (условно его можно назвать "зрелый") в ЛПВП2 ("остаточный"). Последний захватывается гепатоцитами при помощи апоА-1-рецептора.

Липопротеины низкой плотности - образуются в гепатоцитах de novo и в сосудистой системе печени под воздействием печеночной ТАГ-липазы из ЛПОНП; в составе преобладают холестерол и его эфиры, около половины занимают белки и фосфолипиды (25% белки, 7% триацилглицеролы, 38% эфиров ХС, 8% свободного ХС, 22% фосфолипидов); основным апобелком является апоВ-100; нормальное содержание в крови 3,2-4,5 г/л, самые атерогенные.

Функция

1. Транспорт холестерола в клетки, использующие его для реакций синтеза половых гормонов (половые железы), глюко- и минералокортикоидов (кора надпочечников), холекальциферола (кожа), утилизирующие ХС в виде желчных кислот (печень).

2. Транспорт полиеновых жирных кислот в виде эфиров ХС в некоторые клетки рыхлой соединительной ткани (фибробласты, тромбоциты, эндотелий, гладкомышечные клетки), в эпителий гломерулярной мембраны почек, в клетки костного мозга, в клетки роговицы глаз, в нейроциты, в базофилы аденогипофиза.

Клетки рыхлой соединительной ткани активно синтезируют эйкозаноиды. Поэтому им необходим постоянный приток полиненасыщенных жирных кислот (ПНЖК), что осуществляется либо переходом фосфолипидов от оболочки ЛПВП в мембраны клеток либо поглощением ЛПНП, которые несут ПНЖК в виде эфиров холестерола. Особенностью всех этих клеток является наличие лизосомальных кислых гидролаз, расщепляющих эфиры ХС. У других клеток таких ферментов нет.

Обмен

1. В крови первичные ЛПНП взаимодействуют с ЛПВП, отдавая свободный ХС и получая этерифицированный. В результате в них происходит накопление эфиров ХС, увеличение гидрофобного ядра и "выталкивание" белка апоВ-100 на поверхность частицы. Таким образом, первичный ЛПНП переходит в зрелый.

2. На всех клетках, использующих ЛПНП, имеется высокоафинный рецептор, специфичный к ЛПНП – апоВ-100-рецептор. При взаимодействии ЛПНП с рецептором происходитэндоцитоз липопротеина и его лизосомальный распад на составные части – фосфолипиды, белки (и далее до аминокислот), глицерол, жирные кислоты, холестерол и его эфиры.

ХС превращается в гормоны или включается в состав мембран; излишки мембранного ХС удаляются с помощью ЛПВП; при невозможности удалить ХС часть его этерифицируется с олеиновой кислотой ферментом ацил-SКоА:холестерол-ацилтрансферазой (АХАТ); принесенные с эфирами ХС ПНЖК используются для синтезаэйкозаноидов илифосфолипидов.

Около 50% ЛПНП взаимодействуют с апоВ-100-рецепторами гепатоцитов и примерно столько же поглощаются клетками других тканей.



Поделиться:


Последнее изменение этой страницы: 2016-08-16; просмотров: 833; Нарушение авторского права страницы; Мы поможем в написании вашей работы!

infopedia.su Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Обратная связь - 3.135.206.19 (0.013 с.)