Мы поможем в написании ваших работ!



ЗНАЕТЕ ЛИ ВЫ?

Важнейшие функции печени. Роль печени в обмене веществ.

Поиск

Функции печени:

1. Пищеварительная – печень является крупнейшей пищеварительной железой. Она образует желчь, включающую воду (82%), желчные кислоты (12%), фосфатидилхолин (4%),холестерол (0,7%), прямой билирубин, белки, продукты распада стероидных гормонов, электролиты и другие соединения крови, лекарственные средства и их метаболиты.

Желчь обеспечивает эмульгирование и переваривание жиров пищи, стимулирует перистальтику кишечника. Из крови воротной вены желчные кислоты поглощаются симпортом с ионами Na+. В желчный капилляр синтезированные de novo и используемые вторично желчные кислоты секретируются АТФ-зависимым транспортом.

2. Экскреторная функция, близка к пищеварительной – с помощью желчи выводятся билирубин, немного креатинина и мочевины, ксенобиотики и продукты их обезвреживания, холестерол. Последний выводится из организма только в составе желчи.

3. Секреторная – печень осуществляет биосинтез и секрецию в кровь альбумина и некоторых белков других фракций, белков свертывающей системы, липопротеинов, глюкозы, кетоновых тел, 25-оксикальциферола, креатина.

4. Депонирующая – здесь находится место депонирования энергетических резервов гликогена, накапливаются минеральные вещества, особенно железо, витамины A, D, K, B12и фолиевая кислота.

5. Метаболическая функция.

6. Обезвреживающая функция.

Печень, являясь центральным органом метаболизма, участвует в поддержании метаболического гомеостаза и способна осуществлять взаимодействие реакций обмена белков, жиров и углеводов. Местами "соединения" обмена углеводов и белков является пировиноградная кислота, щавелевоуксусная и α-кетоглутаровая кислоты из ЦТК, способных в реакциях трансаминирования превращаться, соответственно, в аланин, аспартат и глутамат. Аналогично протекает процесс превращения аминокислот в кетокислоты.

С обменом липидов углеводы связаны еще более тесно: образуемые в пентозофосфатном пути молекулы НАДФН используются для синтеза жирных кислот и холестерола, глицеральдегидфосфат, также образуемый в пентозофосфатном пути, включается в гликолиз и превращается в диоксиацетонфосфат, глицерол-3-фосфат, образуемый из диоксиацетонфосфата гликолиза, направляется для синтеза триацилглицеролов. Также для этой цели может быть использован глицеральдегид-3-фосфат, синтезированный в этапе структурных перестроек пентозофосфатного пути, "глюкозный" и "аминокислотный" ацетил-SКоА способен участвовать в синтезе жирных кислот и холестерола.

Углеводный обмен - В гепатоцитах активно протекают процессы углеводного обмена. Благодаря синтезу и распаду гликогена печень поддерживает концентрацию глюкозы в крови. Активный синтез гликогена происходит после приема пищи, когда концентрация глюкозы в крови воротной вены достигает 20 ммоль/л. Запасы гликогена в печени составляют от 30 до 100 г. При кратковременном голодании происходит гликогенолиз, в случае длительного голодания основным источником глюкозы крови является глюконеогенез из аминокислот и глицерина. Печень осуществляет взаимопревращение сахаров, т.е. превращение гексоз (фруктозы, галактозы) в глюкозу. Активные реакции пентозофосфатного пути обеспечивают наработку НАДФН, необходимого для микросомального окисления и синтеза жирных кислот и холестерола из глюкозы.

Липидный обмен - Если во время приема пищи в печень поступает избыток глюкозы, который не используется для синтеза гликогена и других синтезов, то она превращается в липиды – холестерол и триацилглицеролы. Поскольку запасать ТАГ печень не может, то их удаление происходит при помощи липопротеинов очень низкой плотности (ЛПОНП). Холестерол используется, в первую очередь, для синтеза желчных кислот, также он включается в состав липопротеинов низкой плотности (ЛПНП) и ЛПОНП. При определенных условиях – голодание, длительная мышечная нагрузка, сахарный диабет I типа, богатая жирами диета – в печени активируется синтез кетоновых тел, используемых большинством тканей как альтернативный источник энергии.

Белковый обмен - Больше половины синтезируемого за сутки в организме белка приходится на печень. Скорость обновления всех белков печени составляет 7 суток, тогда как в других органах эта величина соответствует 17 суткам и более. К ним относятся не только белки собственно гепатоцитов, но и идущие на "экспорт" – альбумины, многие глобулины, ферменты крови, а также фибриноген и факторы свертывания крови.

Аминокислоты подвергаются катаболическим реакциям с трансаминированием и дезаминированием, декарбоксилированию с образованием биогенных аминов. Происходят реакции синтеза холина и креатина благодаря переносу метильной группы от аденозилметионина. В печени идет утилизация избыточного азота и включение его в составмочевины.

Реакции синтеза мочевины теснейшим образом связаны с циклом трикарбоновых кислот.

Пигментный обмен - Участие печени в пигментном обмене заключается в превращении гидрофобного билирубина в гидрофильную форму и секреция его в желчь. Пигментный обмен, в свою очередь, играет важную роль в обмене железа в организме – в гепатоцитах находится железосодержащий белок ферритин.

В клинической практике существуют приемы оценки той или иной функции: Участие в углеводном обмене оценивается: по концентрации глюкозы крови, по крутизне кривой теста толерантности к глюкозе, по "сахарной" кривой после нагрузки галактозой, по величине гипергликемии после введения гормонов (например, адреналина).

Роль в липидном обмене рассматривается: по уровню в крови триацилглицеролов, холестерола, ЛПОНП, ЛПНП, ЛПВП, по коэффициенту атерогенности.

Белковый обмен оценивается: по концентрации общего белка и его фракций в сыворотке крови, по показателям коагулограммы, по уровню мочевины в крови и моче, по активности ферментов АСТ и АЛТ, ЛДГ-4,5, щелочной фосфатазы, глутаматдегидрогеназы.

Пигментный обмен оценивается: по концентрации общего и прямого билирубина в сыворотке крови.

Обезвреживающая роль печени. Реакции микросомального окисления и реакции коньюгации токсических веществ в печени. Примеры обезвреживания (фенол, индол).

Обезвреживание (детоксикация, биотрансформация) естественных метаболитов и чужеродных соединений (ксенобиотиков) непрерывно протекает в любом организме. Для попадания токсичных и чужеродных веществ существует три пути: желудочно-кишечный тракт, легкие и кожа. Далее эти вещества либо могут подвергнуться каким-либо превращениям (биотрансформации) в легких и ЖКТ, либо перейти в кровь. С током крови любые соединения попадают в печень и другие органы. Если это водорастворимое вещество, то оно в состоянии профильтроваться в почках, если летучее – оказаться в выдыхаемом воздухе и покинуть организм, если жирорастворимое – оно либо фиксируется в тканях (кожа, нервная система, жировая ткань и т.п.), либо подвергается биотрансформации в печени. После превращений в печени модифицированное соединение направляется либо в желчь и далее в фекалии, либо в кровь и мочу.

Кожа также является органом выделения, однако обычно эта функция проявляется слабо. Однако при нарушении выделительной функции почек и печени нагрузка на кожу возрастает.

Ксенобиотики – вещества, которые не используются как источник энергии, не встраиваются в структуры организма и не используются для пластических целей. Например, биотрансформации в печени подвергаются следующие вещества: стероидные и тиреоидные гормоны, инсулин, адреналин, продукты распада гемопротеинов (билирубин), продукты жизнедеятельности микрофлоры, всасывающихся из толстого кишечника – кадаверин (производное лизина), путресцин (производное аргинина), крезол и фенол (производное фенилаланина и тирозина) и других токсинов, ксенобиотики (токсины, лекарственные вещества и их метаболиты).

В целом все реакции биотрансформации делят на две группы или фазы: реакции 1 фазы – реакции превращения исходного вещества в более полярный метаболит путем введения или раскрытия функциональной группы (‑ОН, ‑NH2, ‑SH). Эти метаболиты часто неактивны, хотя в некоторых случаях активность не исчезает, а только изменяется. Если эти метаболиты достаточно полярны, они могут легко экскретироваться. Реакции 2 фазы – отличительным признаком этой фазы являются реакции конъюгации с глюкуроновой, серной, уксусной кислотами, с глутатионом или аминокислотами.

Оба типа реакций совершенно самостоятельны и могут идти независимо друг от друга и в любом порядке. Для некоторых веществ после реакций 1 и 2I фазы вновь могут наступить реакции фазы 1. Примером сочетанного превращения веществ может служить обезвреживание продукта метаболизма триптофана индола в животный индикан. Сначала индол окисляется с участием цитохрома Р450 до индоксила, затем конъюгирует с серной кислотой с образованием индоксилсульфата и далее калиевой соли – животного индикана.

При повышенном поступлении индола из толстого кишечника образование индикана в печени усиливается, далее он поступает в почки и выводится с мочой. По концентрации животного индикана в моче можно судить об интенсивности процессов гниения белка в кишечнике.

Реакции микросомального окисления осуществляются несколькими ферментами, расположенными на мембранах эндоплазматического ретикулума (в случае in vitro они называются микросомальные мембраны). Ферменты организуют короткую цепь, которая заканчивается цитохромом P450. Цитохром Р450 взаимодействует с молекулярным кислородом и включает один атом кислорода в молекулу субстрата, способоствуя появлению у нее гидрофильности, а другой – в молекулу воды.

Реакции микросомального окисления относятся к реакциям фазы 1 и предназначены для придания гидрофобной молекуле полярных свойств и/или для повышения ее гидрофильности, усиления реакционной способности молекул для участия в реакциях 2 фазы. В реакциях окисления происходит образование или высвобождение гидроксильных, карбоксильных, тиоловых и аминогрупп, которые и являются гидрофильными.

Ферменты микросомального окисления располагаются в гладком эндоплазматическом ретикулуме и являются оксидазами со смешанной функцией (монооксигеназами).

Основным белком этого процесса является гемопротеин – цитохром Р450. В природе существует до 150 изоформ этого белка, окисляющих около 3000 различных субстратов. У млекопитающих идентифицировано 13 подсемейств цитохрома Р450. Считается, что ферменты одних семейств участвуют в биотрансформации ксенобиотиков, других – метаболизируют эндогенные соединения (стероидные гормоны, простагландины, жирные кислоты и др.).

Работа цитохрома Р450 обеспечивается двумя ферментами: НАДН‑цитохром b5‑оксидоредуктаза, содержит ФАД, НАДФН‑цитохром Р450‑оксидоредуктаза, содержит ФМН и ФАД.

Обе оксидоредуктазы получают электроны от соответствующих восстановленных эквивалентов и передают их на цитохром Р450. Этот белок, предварительно присоединив молекулу восстановленного субстрата, связывается с молекулой кислорода. Получив еще один электрон, цитохром P450 осуществляет включение в состав гидрофобного субстрата первого атома кислорода (окисление субстрата). Одновременно происходит восстановление второго атома кислорода до воды.

Существенной особенностью микросомального окисления является способность к индукции, т.е. увеличению мощности процесса. Индукторами являются вещества, активирующие синтез цитохрома Р450 и транскрипцию соответствующих мРНК. Классическим индуктором считаются производные барбитуровой кислоты – барбитураты. Поскольку существует много изоформ цитохрома, то имеется избирательность среди индукторов.

Ингибиторы микросомального окисления связываются с белковой частью цитохрома или с железом гема – например, спиронолактон, эритромицин.

98. Биосинтез и распад гемоглобина в тканях. Механизм образования основных гематогенных пигментов.

За сутки у человека распадается около 9 г гемопротеинов, в основном это гемоглобин эритроцитов. Эритроциты живут 90-120 дней, после чего лизируются в кровеносном русле или в селезенке. При разрушении эритроцитов в кровяном русле высвобождаемый гемоглобин образует комплекс с белком-переносчиком гаптоглобином (фракция α2-глобулинов крови) и переносится в клетки ретикуло-эндотелиальной системы (РЭС) селезенки (главным образом), печени и костного мозга.

Синтез билирубина - В клетках РЭС гем в составе гемоглобина окисляется молекулярным кислородом. В реакциях последовательно происходит разрыв метинового мостика между 1-м и 2-м пиррольными кольцами гема с их восстановлением, отщеплением железа и белковой части и образованием оранжевого пигмента билирубина.

Билирубин – токсичное, жирорастворимое вещество, способное нарушать окислительное фосфорилирование в клетках. Особенно чувствительны к нему клетки нервной ткани.

Выведение билирубина - Из клеток ретикуло-эндотелиальной системы билирубин попадает в кровь. Здесь он находится в комплексе с альбумином плазмы, в гораздо меньшем количестве – в комплексах с металлами, аминокислотами, пептидами и другими малыми молекулами. Образование таких комплексов не позволяет выделяться билирубину с мочой. Билирубин в комплексе с альбумином называется свободный (неконъюгированный) или непрямойбилирубин. Из сосудистого русла в гепатоциты билирубин попадает с помощью белка-переносчика (лигандина). В клетке протекает реакция связывания билирубина с УДФ-глюкуроновой кислотой, при этом образуются моно- и диглюкурониды. Кроме глюкуроновой кислоты, в реакцию могут вступать сульфаты, фосфаты, глюкозиды. Билирубин-глюкуронид получил название связанный (конъюгированный) или прямой билирубин.

После образования билирубин-глюкурониды АТФ-зависимым переносчиком секретируются в желчные протоки и далее в кишечник, где при участии бактериальной β-глюкуронидазыпревращаются в свободный билирубин.

Одновременно некоторое количество билирубин-глюкуронидов может попадать (особенно у взрослых) из желчи в кровь по межклеточным щелям.

Таким образом, в крови в норме одновременно существуют две формы билирубина: свободный, попадающий сюда из клеток РЭС (около 80% всего количества), и связанный, попадающий из желчных протоков (до 20%).

В кишечнике билирубин подвергается восстановлению под действием микрофлоры домезобилирубина и мезобилиногена (уробилиногена). Часть последних всасывается и с током крови вновь попадает в печень, где окисляется до ди- и трипирролов. При этом в здоровом организме в общий круг кровообращения и в мочу мезобилирубин и уробилиноген не попадают, а полностью задерживаются гепатоцитами. Оставшаяся в кишечнике часть пигментов ферментами бактериальной флоры толстого кишечника восстанавливается достеркобилиногена и выделяется из организма, окрашивая кал. Незначительное количество стеркобилиногена через геморроидальные вены попадает в большой круг кровообращения, отсюда в почки и выделяется с мочой. На воздухе стеркобилиноген и уробилиноген превращаются, соответственно, в стеркобилин и уробилин.



Поделиться:


Последнее изменение этой страницы: 2016-08-16; просмотров: 888; Нарушение авторского права страницы; Мы поможем в написании вашей работы!

infopedia.su Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Обратная связь - 18.191.171.10 (0.009 с.)