Заглавная страница Избранные статьи Случайная статья Познавательные статьи Новые добавления Обратная связь FAQ Написать работу КАТЕГОРИИ: АрхеологияБиология Генетика География Информатика История Логика Маркетинг Математика Менеджмент Механика Педагогика Религия Социология Технологии Физика Философия Финансы Химия Экология ТОП 10 на сайте Приготовление дезинфицирующих растворов различной концентрацииТехника нижней прямой подачи мяча. Франко-прусская война (причины и последствия) Организация работы процедурного кабинета Смысловое и механическое запоминание, их место и роль в усвоении знаний Коммуникативные барьеры и пути их преодоления Обработка изделий медицинского назначения многократного применения Образцы текста публицистического стиля Четыре типа изменения баланса Задачи с ответами для Всероссийской олимпиады по праву Мы поможем в написании ваших работ! ЗНАЕТЕ ЛИ ВЫ?
Влияние общества на человека
Приготовление дезинфицирующих растворов различной концентрации Практические работы по географии для 6 класса Организация работы процедурного кабинета Изменения в неживой природе осенью Уборка процедурного кабинета Сольфеджио. Все правила по сольфеджио Балочные системы. Определение реакций опор и моментов защемления |
Регуляция активности пируватдегидрогеназного комплекса и цикла лимонной кислотыСодержание книги
Поиск на нашем сайте
Активность цикла Кребса непосредственно связана с поступлением окисленных кофакторов дегидрогеназ (например, NAD), которое в свою очередь зависит от доступности ADP и, в конечном счете, от скорости потребления АТР. Свойства ряда ферментов этого цикла указывают на то, что кроме общей регуляции существует также регуляция на уровне самого цикла. В клетках головного мозга, в которых ацетил-СоА образуется в основном из углеводов, регуляция цикла лимонной кислоты может происходить на стадии, катализируемой пируватдегидрогеназой. В самом цикле регуляция может осуществляться путем аллостерического ингибирования цитратсинтазы при действии АТР или ацил-СоА-производных длинноцепочечных жирных кислот. Митохондриальная NAD-зависимая изоцитратдегидрогеназа аллостерически активируется ADP и ингибируется АТР и NADH. α-Кетоглутаратдегидрогеназный комплекс регулируется, по-видимому, аналогично пируватдегидрогеназе. Сукцинатдегидрогеназа ингибируется оксалоацетатом, а образование оксалоацетата в малатдегидрогеназной реакции зависит от соотношения [NADH]/[NAD+]. |
||||||||||
3. Классификация оксидоредуктаз: оксидазы, дегидрогеназы, пероксидазы, оксигеназы. Митохондриальные и микросомальные монооксигеназы: строение и биологическая роль | |||||||||||
Ферменты, катализирующие окислительно-восстановительные реакции, называются оксидоредуктазы: 1. Оксидазы(цитохромоксидаза, фенолаза). Истинные оксидазы катализируют удаление водорода из субстрата, используя при этом в качестве акцептора водорода только кислород. Они неизменно содержат медь, продуктом реакции является вода (исключение составляют реакции, катализируемые уриказой и моноаминоксидазой, в результате которых образуется Н202). 2. Аэробные дегидрогеназы(дегидрогеназа L-аминокислот, ксантиндегидрогеназа, альдегиддегидрогеназа,глюкозооксидаза). Аэробные дегидрогеназы – ферменты, катализирующие удаление водорода из субстрата; в отличие от оксидаз они могут использовать в качестве акцептора водорода не только кислород, но и искусственные акцепторы, такие, как метиленовый синий. Эти дегидрогеназы относятся к флавопротеинам, и продуктом катализируемой ими реакции является перекись водорода, а не вода. 3.Анаэробные дегидрогеназы(НАД-зависимые дегидрогеназы, НАДФ-зависимые дегидрогеназы, сукцинатдегидрогеназа, цитохромоксидаза). Анаэробные дегидрогеназы –ферменты, катализирующие удаление водорода из субстрата, но не способные использовать кислород в качестве акцептора водорода. В этот класс входит большое число ферментов. Они выполняют две главные функции: а) Перенос водорода с одного субстрата на другой в сопряженной окислительно-восстановительной реакции. Эти дегидрогеназы специфичны к субстратам, но часто используют один и тот же кофермент или переносчик водорода. Поскольку рассматриваемые реакции обратимы, они обеспечивают в клетке свободный перенос восстановительных эквивалентов. Реакции этого типа, приводящие к окислению одного субстрата за счет восстановления другого, особенно важны для осуществления окислительных процессов в отсутствие кислорода. б) Функцию компонентов дыхательной цепи, обеспечивающих транспорт электронов от субстрата на кислород. 4. Гидроксипероксидазы(пероксидаза, каталаза). Гидроксипероксидазы – ферменты, использующие в качестве субстрата перекись водорода или органические перекиси. К этой категории относятся два типа ферментов: пероксидазы, находящиеся в составе молока, в растениях, лейкоцитах, тромбоцитах, эритроцитах и т. д., и каталаза, функционирующая в тканях животных и растений. 5. Оксигеназы(диоксигеназы, монооксигеназы). Окснгеназы – ферменты, катализирующие прямое введение кислорода в молекулу субстрата. Митохондриальные и микросомальные монооксигеназы: строение и биологическая роль Митохондриальные цитохром Р-450-содержащие монооксигеназные системы Эти системы находятся в стероидогенных тканях – в коре надпочечников, в семенниках, яичниках и плаценте; они участвуют в биосинтезе стероидных гормонов из холестерола (гидроксилирование по С22 и С20 при отщеплении боковой цепи и по положениям 11β и 18). Ферменты почечной системы катализируют гидроксилирование 25-гидроксихолекальциферола по положениям 1α и 24; в печени происходит гидроксилирование холестерола по положению 26 при биосинтезе желчных кислот. В коре надпочечников содержание митохондриального цитохрома Р-450 в шесть раз выше, чем содержание цитохромов дыхательной цепи. Монооксигеназная система состоит из трех компонентов, локализованных во внутренней митохондриальной мембране на границе с матриксом: NADP-специфичного FAD-содержащего флавопротеина, Fе2S2-белка (адренодоксина) и цитохрома Р-450. Микросомные цитохром Р-450-содержащие монооксигеназные системы. К этой группе относятся ферменты, участвующие в метаболизме многих лекарственных веществ путем их гидроксилирования. Они находятся в микросомах печени вместе с цитохромом Р-450 и цитохромом b5. Восстановителями этих цитохромов являются NADH и NADPH. Цитохромы окисляются субстратами в результате серии ферментативных реакций, составляющих так называемый гидроксилазный цикл: Лек – лекарственное вещество. К лекарственным веществам, метаболизм которых идет при участии рассматриваемых систем, относятся бензпирен, аминопирин, анилин, морфин и бензофетамин. Многие лекарственные вещества, например фенобарбитал, способны индуцировать синтез микросомных ферментов и цитохрома Р-450. Цитохром Р-450-гидроксилазный цикл в микросомах. Приведенная система типична для гидроксилаз стероидов в коре надпочечников. Микросомная цитохром Р-450-гидроксилаза печени не нуждается в присутствии железосерного белка Fe2S2. Окись углерода (СО) ингибирует указанную на рисунке стадию → |
|
||||||||||
Последнее изменение этой страницы: 2016-12-27; просмотров: 197; Нарушение авторского права страницы; Мы поможем в написании вашей работы! infopedia.su Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Обратная связь - 3.141.192.174 (0.008 с.) |