Заглавная страница Избранные статьи Случайная статья Познавательные статьи Новые добавления Обратная связь FAQ Написать работу КАТЕГОРИИ: АрхеологияБиология Генетика География Информатика История Логика Маркетинг Математика Менеджмент Механика Педагогика Религия Социология Технологии Физика Философия Финансы Химия Экология ТОП 10 на сайте Приготовление дезинфицирующих растворов различной концентрацииТехника нижней прямой подачи мяча. Франко-прусская война (причины и последствия) Организация работы процедурного кабинета Смысловое и механическое запоминание, их место и роль в усвоении знаний Коммуникативные барьеры и пути их преодоления Обработка изделий медицинского назначения многократного применения Образцы текста публицистического стиля Четыре типа изменения баланса Задачи с ответами для Всероссийской олимпиады по праву Мы поможем в написании ваших работ! ЗНАЕТЕ ЛИ ВЫ?
Влияние общества на человека
Приготовление дезинфицирующих растворов различной концентрации Практические работы по географии для 6 класса Организация работы процедурного кабинета Изменения в неживой природе осенью Уборка процедурного кабинета Сольфеджио. Все правила по сольфеджио Балочные системы. Определение реакций опор и моментов защемления |
Системы транспорта митохондрий↑ ⇐ ПредыдущаяСтр 5 из 5 Содержание книги Поиск на нашем сайте
Внутренняя бйслойная митохондриальная мембрана свободно проницаема для незаряженных небольших молекул, таких, как кислород, вода, СО2 и NH3, а также для монокарбоновых кислот, таких, как 3-гидроксимасляная, ацетоуксусная и уксусная. Длинноцепочечные жирные кислоты транспортируются в митохондрии с помощью карнитиновой системы. Имеется также специальный переносчик пирувата, функционирующий по принципу симпорта, использующего градиент протонов с наружной на внутреннюю поверхность митохондриальной мембраны. Транспорт дикарбоксилатных и трикарбоксилатных анионов, а также аминокислот осуществляется с помощью специальных систем переноса, облегчающих их прохождение через мембрану. Монокарбоновые кислоты легче проникают через мембрану вследствие меньшей степени их диссоциации; недиссоциированная форма кислоты имеет большую растворимость в липидах, и, как полагают, именно в этой форме монокарбоновые кислоты проходят через липидную мембрану. Транспорт ди- и трикарбоксилатных анионов тесно связан с транспортом неорганического фосфата, который легко проникает через мембрану в форме ионов Н2РО4- в обмен на ОН-. Малат переносится системой транспорта дикарбоксилатов в обмен на перенос неорганического фосфата в обратном направлении. Перенос цитрата, изоцитрата и цис-аконитата системой транспорта трикарбоновых кислот происходит в обмен на перенос малата в обратном направлении. α-Кетоглутарат также поступает в обмен на малат. Таким образом, в результате работы обменных механизмов поддерживается осмотическое равновесие. Следует отметить, что перенос цитрата через митохондриальную мембрану зависит не только от транспорта малата, но также и от транспорта неорганического фосфата. Переносчик адениновых нуклеотидов обменивает АТР на ADP, но не на AMP. Жизненно важной задачей является обеспечение выхода АТР из митохондрий для последующего использования вне митохондрий и одновременного притока ADP для образования АТР внутри митохондрий. Ионы Na+ могут обмениваться на ионы Н+ за счет градиента протонов. Полагают, что при активном транспорте ионов Са2+ внутрь митохондрий происходит перенос единичного положительного заряда на каждый ион, что, возможно, связано с обменом Са2+/Н+. Выход кальция из митохондрии облегчается при обмене его на Na+. |
Пути поступления электронов и протонов в ЦПЭ от первичных доноров:
Сопряжение дыхания и синтеза АТФ в митохондриях:
Сопряжение переноса электронов с синтезом АТР в свете хемиосмотической гипотезы.
Согласно хемиосмотической гипотезе энергия переноса электронов передается на синтез АТР через протонный градиент.
| ||||||||
5. Окислительное фосфорилирование, коэффициент Р/О. Дыхательный контроль. Ингибиторы дыхательной цепи и разобщители с окислительным фосфорилированием. Энергетический обмен и теплопродукция | ||||||||||
Окислительное фосфорилирование, коэффициент Р/О Фосфорилирование ADP – это синтез АТР (суть процесса рассматривалась ранее). Окисление молекулы NADH в ЦПЭ сопровождается образованием 3 молекул АТР. Электроны от FAD-зависимых дегидрогеназ поступают в ЦПЭ на KoQ, минуя первый пункт сопряжения. Поэтому образуется только 2 молекулы АТР. Отношение количества фосфорной кислоты (Р), использованной на фосфорилирование ADP, к атому кислорода (О), поглощённого в процессе дыхания, называют коэффициентом окислительного фосфорилирования и обозначают как Р/О. Для NADH Р/О = 3, для сукцината Р/О = 2. Эти величины отражают теоретический максимум синтеза АТР, фактически эта величина меньше. Дыхательный контроль Общее содержание АТР в организме 30-50 г, но каждая молекула АТР в клетке «живёт» меньше минуты. В сутки у человека синтезируется 40-60 кг АТР и столько же распадается. Скорость дыхания митохондрий может контролироваться концентрацией ADP. Это обусловлено тем, что окисление и фосфорилирование жестко сопряжены, т.е. функционирование дыхательной цепи не может осуществляться, если оно не сопровождается фосфорилированием ADP. Чане и Уильяме предложили рассматривать 5 состояний, при которых скорость дыхания митохондрий лимитируется определенными факторами (таблица → → → →). Обычно большая часть клеток, находящихся в покоящемся состоянии, пребывает в состоянии 4, при котором скорость дыхания определяется доступностью ADP. Энергия, необходимая для совершения работы, поставляется за счет превращения АТР в ADP; в результате создаются условия для увеличения скорости дыхания, что в свою очередь приводит к восполнению запасов АТР (рисунок → → → →). Очевидно, что при определенных условиях на скорость работы дыхательной цепи может влиять и концентрация неорганического фосфата. При повышении скорости дыхания (вызванном, например, физической работой) клетка приближается к состоянию 3 или состоянию 5: либо исчерпываются возможности дыхательной цепи, либо величина Ро опускается ниже значения Км для цитохрома а3 Скорость-лимитирующим фактором может оказаться ATP/ADP-транслокатор, обеспечивающий поступление ADP из цитозоля в митохондрии. Таким образом, механизм, с помощью которого улавливается свободная энергия окисления пищевых продуктов, является ступенчатым, эффективным (40-45%) и регулируемым, а не взрывоподобным, неэффективным и неконтролируемым. Часть свободной энергии, которая не улавливается в форме высокоэнергетических фосфатов, освобождается в форме теплоты. Это совсем не означает, что она пропадает напрасно – у теплокровных животных она используется для поддержания температуры тела. Ингибиторы дыхательной цепи и разобщители с окислительным фосфорилированием Значительная информация о дыхательной цепи была получена при использовании различных ингибиторов; предполагаемые места их действия показаны на рисунке. Ингибиторы можно разделить на 3 группы: 1) ингибиторы собственно дыхательной цепи, 2) ингибиторы окислительного фосфорилирования, 3) разобщители окислительного фосфорилирования. Ингибиторы, блокирующие дыхательную цепь, по-видимому, действуют в трех местах. Одно из них ингибируется барбитуратами (например, амобарбиталом), а также антибиотиком пиерицидином А и ротеноном. Эти ингибиторы препятствуют окислению субстратов, которые поставляют восстановительные эквиваленты в дыхательную цепь при участии NAD-зависимых дегидрогеназ, примером таких субстратов является гидроксибутират. Димеркапрол и антимицин А ингибируют дыхательную цепь на участке между цитохромом b и цитохромом с. Классические яды – H2S, окись углерода и цианид – ингибируют цитохромоксидазу. Карбоксин и TTFA (теноилтрифторацегон) специфически ингибируют переход восстановительных эквивалентов от сукцинатдегидрогеназы на кофермент Q, а малонат является конкурентным ингибитором сукцинатдегидрогеназы. Антибиотик олигомицин полностью блокирует окисление и фосфорилирование в интактных митохондриях. Однако если вместе с олигомицином добавить к системе разобщитель динитрофенол, то окисление протекает, но без фосфорилирования. Это означает, что олигомицин не действует непосредственно на дыхательную цепь, а подавляет стадию фосфорилирования. Атрактилозид ингибирует окислительное фосфорилирование, блокируя транспорт адениновых нуклеотидов через внутреннюю митохондриальную мембрану. Он ингибирует транспорт ADP в митохондрии и выход АТР из митохондрий. Разобщители нарушают систему сопряжения процессов окисления в дыхательной цепи и фосфорилирования. В этих условиях процесс дыхания происходит неконтролируемым образом, поскольку концентрации ADP или Р, не являются лимитирующими. Чаще всего в качестве разобщителя используют 2,4-динитрофенол. Аналогичное действие оказывает ряд других соединений: динитрокрезол, пентахлорфенол, СССР (карбонилцианид- м -хлорфенилгидразон). Последний по эффективности в 100 раз превосходит динитрофенол. | Состояния дыхательного контроля Роль ADP в дыхательном контроле Предполагаемые участки ингибирования (Θ) дыхательной цепи специфическими лекарственными веществами, химическими реагентами и антибиотиками. Указаны участки, где предположительно происходит сопряжение с фосфорилированием. BAL – димеркапрол; TTFA – хелатобразующий реагент на железо. Комплекс I – NADH: убихинон-оксидоредуктаза; комплекс II – сукцинат: убихинон-оксидоредуктаза; комплекс III – убихинол: феррицитохром с -оксидоредуктаза; комплекс IV – ферроцитохром с: кислород-оксидоредуктаза. FeS – железо-серный белок; Q—убихинон. АТФ-цикл и теплопродукция | |||||||||
6. Активные формы кислорода: образование, токсическое действие. Перекисное окисление мембранных липидов. Механизмы защиты от токсического действия кислорода. Прооксиданты и антиоксиданты | ||||||||||
Образование токсичных форм кислорода в ЦПЭ В ЦПЭ поглощается около 90 % поступающего в клетки О2. Остальная часть О2 используется в других окислительно-восстановительных реакциях. Ферменты, участвующие в окислительно-восстановительных реакциях с использованием кислорода, делятся на 2 группы: оксидазы и оксигеназы. Оксидазы используют молекулярный кислород только в качестве акцептора электронов, восстанавливая его до Н2О или Н2О2. Оксигеназы включают один (монооксигеназы) или два (диоксигеназы) атома кислорода в образующийся продукт реакции. Хотя эти реакции не сопровождаются синтезом АТФ, они необходимы для многих специфических реакций в обмене аминокислот, синтезе жёлчных кислот и стероидов, в реакциях обезвреживания чужеродных веществ в печени. В большинстве реакций с участием молекулярного кислорода его восстановление происходит поэтапно с переносом одного электрона на каждом этапе. При одноэлектронном переносе происходит образование промежуточных высокореактивных форм кислорода. В невозбуждённом состоянии кислород не токсичен. Образование токсических форм кислорода связано с особенностями его молекулярной структуры. О2 содержит 2 неспаренных электрона с параллельными спинами, которые не могут образовывать термодинамически стабильную пару и располагаются на разных орбиталях. Каждая из этих орбиталей может принять ещё один электрон. Полное восстановление О2 происходит в результате 4 одноэлектронных переходов: Супероксид, пероксид и гидроксильный радикал – активные окислители, что представляет серьёзную опасность для многих структур клетки. Активные формы кислорода могут отщеплять электроны от многих соединений, превращая их в новые свободные радикалы, инициируя цепные окислительные реакции. Большая часть активных форм кислорода образуется при переносе электронов в ЦПЭ, прежде всего при функционировании QН2-дегидрогеназного комплекса. Это происходит в результате неферментативного переноса («утечки») электронов с QН2 на кислород (рисунок → → → →) | Повреждающее действие свободных радикалов на компоненты клетки 1 – разрушение белков; 2 – повреждение ЭПР; 3 – разрушение ядерной мембраны и повреждение ДНК; 4 – разрушение мембраны митохондрий; 5 – перекисное окисление липидов (ПОЛ) клеточной мембраны; 6,7,8 – проникновение в клетку воды и ионов. Образование супероксида в ЦПЭ «Утечка» электронов в ЦПЭ может происходить при переносе электронов с участием коэнзима Q. При восстановлении убихинон превращается в анион-радикал семихинона. Этот радикал неферментативно взаимодействует с О2 с образованием супероксидного радикала. |
| Поделиться: |
Познавательные статьи:
Последнее изменение этой страницы: 2016-12-27; просмотров: 220; Нарушение авторского права страницы; Мы поможем в написании вашей работы!
infopedia.su Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Обратная связь - 3.16.50.1 (0.007 с.)