Заглавная страница Избранные статьи Случайная статья Познавательные статьи Новые добавления Обратная связь FAQ Написать работу КАТЕГОРИИ: АрхеологияБиология Генетика География Информатика История Логика Маркетинг Математика Менеджмент Механика Педагогика Религия Социология Технологии Физика Философия Финансы Химия Экология ТОП 10 на сайте Приготовление дезинфицирующих растворов различной концентрацииТехника нижней прямой подачи мяча. Франко-прусская война (причины и последствия) Организация работы процедурного кабинета Смысловое и механическое запоминание, их место и роль в усвоении знаний Коммуникативные барьеры и пути их преодоления Обработка изделий медицинского назначения многократного применения Образцы текста публицистического стиля Четыре типа изменения баланса Задачи с ответами для Всероссийской олимпиады по праву Мы поможем в написании ваших работ! ЗНАЕТЕ ЛИ ВЫ?
Влияние общества на человека
Приготовление дезинфицирующих растворов различной концентрации Практические работы по географии для 6 класса Организация работы процедурного кабинета Изменения в неживой природе осенью Уборка процедурного кабинета Сольфеджио. Все правила по сольфеджио Балочные системы. Определение реакций опор и моментов защемления |
Биосинтез ХС. Схема процесса. Атеросклероз и связь нарушений метаболизма ХС и липопротеинов.↑ Стр 1 из 15Следующая ⇒ Содержание книги
Поиск на нашем сайте
Билет №1 1.Общее понятие об обмене веществ. Катаболизм и анаболизм. Основные этапы. Значение АТФ и др. макроэргов. Обмен вещ-в (метаболизм) – вся совокупность бх-реакций, протекающих в организме. Ф-ии метаболизма: 1) снабжение клеток Е, образующейся при расщеплении пищи (экзэргические) – используется для реакции биосинтеза; 2) синтез специфических для организма соединений (эндэргические). 2 стадии метаболизма: анаболизм (синтезе сложных молекул из более простых с накоплением энергии) и катаболизм (расщепление крупных молекул до более простых с выделением Е). Катаболизм, 3 стадии: 1.превращение полимера в мономеры: Б,Ж,У → АМК, моносахариды, ж.к, глицерин. 2. превращение мономеров в унифицированный продукт:АМК,моносахара,ж.к,глицерин→ацетилКоА 3.третья стадия катаболизма – первая стадия анаболизма. АцетилКоА идет в ЦТК, в ЦТК образуются субстраты, используемые на синтез новых соединений (α-кетоглутарат – глутамат, сукцинилКоА – гем); АДФ фосфорилируется в АТФ. Макроэрги́ческие соедине́ния - группа природных веществ, молекулы которых содержат богатые энергией, или макроэргические, связи; присутствуют во всех живых клетках и участвуют в накоплении и превращении энергии. Разрыв макроэргических связей в молекулах М.с. сопровождается выделением энергии, используемой для биосинтеза и транспорта веществ, мышечного сокращения, пищеварения и других процессов жизнедеятельности организма. Все известные М.с. содержат фосфорильную (—РО3Н2) или ацильную группу. АТФ - служит универсальным переносчиком и основным аккумулятором химической энергии в живых клетках, кофермент многих ферментов, донор энергии, необходимой для протекания биосинтетических реакций. Макроэрги: нуклеозидтрифосфаты и нуклеозиддифосфаты (АТФ, ГДФ и их аналоги), ацетил-КоА, сукцинил-КоА, креатинфосфат, фосфоенолпируват. 2. Производные моносахаридов, образующиеся в организме (фосфорные эфиры, уроновые кислоты, аминосахара), их биологическое значение. Моносахариды в свою очередь делятся, во первых, по характеру карбонильной группы на альдозы и кетозы и, во-вторых,по числу атомов углерода в молекуле на триозы, тетрозы, пентозы и т.д. Обычно моносахариды имеют тривиальные названия: глюкоза, галактоза, рибоза, ксилоза и др. К этой же группе соединений относятся различные производные моносахаридов, важнейшими из них являются фосфорные эфиры моносахаридов [ глюкозо-6-фосфат, фруктозо-1,6-бисфосфат, рибозо-5-фосфат и др.], уроновые кислоты [галактуроновая, глюкуроновая, идуроновая и др.], аминосахара [глюкозамин, галактозамин и др.], сульфатированные производные уроновых кислот, ацетилированные производные аминосахаров и др. Моносахариды и их производные выполняют, во-первых, энергетическую функцию: окислительное расщепление этих соединений дает организму 55-60 % необходимой ему энергии. Во-вторых, промежуточные продукты распада моносахаридов и их производных используются в клетках для синтеза других необходимых клетке веществ, соединений других классов; из промежуточных продуктов метаболизма глюкозы в клетках могут синтезироваться липиды и заменимые аминокислоты. В третьих, моносахариды и их производные выполняют структурную функцию, являясь мономерными единицами других, более сложных молекул, таких как полисахариды или нуклеотиды. Биосинтез ХС. Схема процесса. Атеросклероз и связь нарушений метаболизма ХС и липопротеинов. 80% - в печени, 10% - в стенке тонк.к., 5% - в коже. 1) до образования мевалоновой кислоты: +АцКоА, ГМГ-синтетаза 2АцКоа → АцАцКоА → НСОО – СН2 – С(ОН)(СН3)- СН2 –СОSКоА(3-гирокси-3-метилглутаринКоА) - НSКоА - НSКоА ↓ гмк-редуктаза 2НАДФН2 НООС – СН2 – С(ОН)(СН3)-СН2- СН2ОН (мевалоновая к-та) 2)от мевалоновой до сквалена: С6 +3АТФ→ С5 → С10 → С15 (мевал.к.) (изопентинпироф.) (геранилпироф.) (фарнезилпироф.) 2С15 → С30 конденсация до сквалена с НАДФН2 3) С30 → С27 циклизация -3СН3 и перемещение двойной связи При избытке ХС ЛПВП несут излишки в печень, где он должен утилизироваться, если этот процесс нарушается, то наступает атеросклероз. ЛПНП и ЛПОНП несут ХС из печени в ткани, они атерогенные. Минеральные вещества крови (Са, Р, Na, K, Fe). Участие в обмене. Билет №2 Структура ферментов. Активный центр. Механизм обр-ия фермент-субстратного комплекса. Аллостерические участки, их биороль. Функциональные участки Ф: Субстрат взаимодействует только с определенной частью Ф. – активным центром (1% от m Ф). Активный центр – уникальная комбинация АМК-остатков на уровне третичной структуры или 4-ой. В образовании акт. Центра у простых Ф используется: NH2-группа аргинина и лизина, ОН-группа серина и треанина, SH-группа цистеина, СООН-группа аспартата и глутамата, Н – глицина. У сложных Ф в формировании акт.центра участвуют и Ко-факторы, и именно в Ко-факторах всегда происходят изменения, противоположные изменениям, происходящим в субстрате. В акт.центре выделяют контактную площадку (якорная) и каталитический участок. Контактная площадка обеспечивает сродство Ф к S. Каталитический участок – в нем непосредственно идет каталитическая реакция. Он отвечает за выбор типа хим. р-ии превращения S. Аллостерический центр – удален от акт.центра и служит для присоединения низкомолекулярных веществ – модификаторов(эффекторов). Присоединение модификатора будет приводить либо к ↑ акт.Ф или к его ингибированию. Центр хим.модификации: - фосфатная, - ацетатная Участки межмолекулярного взаимодействия, которые присутствуют у мультиферментных комплексов, таких как пируватдегидрогеназный комплекс, α-КГ-ДГ-комплекс. Механизмы образования комплекса Ф-S: 1модель – Фишера. Модель жесткой матрицы. Чтобы шла хим.р-ия Ф д.подходить к субстрату, как ключ к замку. 2модель – Кошланда. При связывании субстрата происходит изменение акт.центра Ф, после чего они становятся комплиментарными друг другу. Изменения в акт.центе противоположны из-ям в S. И в акт.центре и в S всегда будет происходить перераспределение связей, разрыв старых и формирование новых. 4 стадии: Ф+S ↔ Ф S → Ф S *↔ ФР → Ф + Р (связывание) (активация) (высвобождение)
Билет №3. Содержание и формы билирубина в крови. Диагностическое значение форм билирубина. Общее содержание билирубина определяется суммой прямого и непрямого билирубина. Общий билирубин = 8,5-20,5 ммоль/л. Прямой билирубин менее 5 ммоль/л. Непрямой билирубин – это расчетная величина, общий билирубин минус прямой билирубин. Билирубин – красно-коричневый пигмент, токсичный, плохо растворим в воде, в крови связывается с альбуминами, если не связывается то оседает в тканях, что придает им желтый цвет, может развиться ядерная желтуха – поражение ядер цнс. Непрямой билирубин связан с альбуминами, образуется в ретикулоэндотелиальной системе и транспортируется в печень; составляет 75% от общего количества билирубина, в норме с мочой не выводится, т.к. почками не фильтруется. Прямой билирубин связан с двумя молекулами глю кислоты, образуется в гепатоцитах печени и транспортируется в кишечник; составляет 25% от общего кол-ва билирубина, фильтруется в почках, выводится с мочой в небольших количествах, качественными пробами в моче не определяется. Билет №4. 1. Белки как амфотерные электролиты. Механизм образования заряда. Изоэлектрическая точка белка. Св-ва Б в ИТ. Б – амфотерные полиэлектролиты, содержат кислые(аспарагиновая, глутаминова) и основные(лизин, аргинин, гистидин) АМК.В растворе приобретают заряд, становятся катионами или анионами в зависимости от рН. Суммарный заряд Б зависит от соотношения АМК и рН р-ра. З-ие рН, при кот.суммарный заряд Б равен 0 – изоэлектрическая точка. Белок в ИТ – цвиттер-ион. Св-ва Б в ИТ:1)мин устойчивость в р-ре, нет заряда, нет элктростатического отталкивания, молекулы Б слипаются и выпадают в осадок.2)мах спасобность к осаждению.3)мин вязкость из-за низкой концентрации белка в р-ре.4)неподвижны в электрическом поле.5)при сдвиге рН, Б приобретает заряд, раствоимость и подвижность в эл.поле. Заряд «+» - Б-поликатион, заряд «-» - Б-полианион. Содержание глюкозы в крови. Возрастные особенности. Норма взрослого человека – 3,5-5,5 ммоль/л, если больше 11 ммоль/л, то сахар появляется в моче. Если меньше 3,3 ммоль/л – гипогликемия, больше 6 ммоль/л – гипергликемия. Недоношенные - 1,1-3,33, новорожденные - 2,22-3,33, 1 месяц – 2,7-4,44, 7 лет – 3,33-5,55, до 60 лет – 4,44-6,38, старше 60 – 4,61-6,10.
Билет №5 Содержание белков в плазме крови, возрастные особенности. Белки плазмы крови – это альбумины, глобулины и фибриноген. Общее количество белка 65-85 грамм в литре крови. Возрастные особенности: новорожденные 46-70, 1-2 года 56-75, до 69 лет 64-83, после 60 лет 62-81. Гипопротеинемия возникает вследствие: голодания, при повышенной потере белка – заболевания почек, кровопотери, новообразованиях, нарушениях синтеза белка – заболеваниях печени. Гиперпротеинемия: дегидротации (травмы, ожоги, холера), появление парапротеинемии, т е при появлении патологических белков при миеломной болезни и болезни Вальденстрема. Общее содержание белков в плазме крови 65-85 гр в литре или 7%. Основные белки плазмы крови – это альбумины 59 гр в литре и глобулины 20-30 гр в литре, фибриноген 2-4 гр в литре. Методы разделения белков плазмы крови – это электрофорез на бумаге осуществляется в щелочном буфере рН=8,6. В щелочной среде все белки плазмы крови приобретают отрицательный заряд и перемещаются в одну сторонуПри острой инфекции кол-во гаммаглобулинов увеличивается, при нарушении белковосинтезирующей функции печени количество альбуминов уменьшается. Функции белков плазмы крови: 1) поддержание онкотического давления 2) регулируют и поддерживают КОС за счет белковой и гемоглобиновой буферной системы крови 3) иммуноглобулины участвуют в поддержании гуморального иммунитета 4) транспорт микроэлементов, таких как Cu Fe Ca Mg и других 5) при белковом голодании являются резервом аминокислот 6) специальные белковые молекулы осуществляют транспорт липидов, углеводов, витаминов, конечных продуктов обмена и так далее.
Билет №6. Современные представления о строении белков. Уровни структуры белковой молекулы. Видовая специфичность белков. Конформация белковой молекулы (вторичная и третичная структуры). Типы свЯзей в белках. Четвертичный уровень структуры. Доменный принцип структ.орг-ии. Видовая и индивидуальная специфичность набора белков в данном организме определяет особенности его строения и функционирования. Набор белков в дифференцирующихся клетках одного организма определяет морфологические и функциональные особенности каждого типа клеток. 1 структура – посл-ть АМК, соединенных прочной пептидной связью. Она наделена особым биологическим значением – в ней заложена информация, какая будет 2ая, 3ая, 4ая. 2 структура –упаковка п/п цепи в α-спираль или в β-складчатый слой. В формировании спирали, главную роль играют водородные связи. α-спираль: 1 завиток 3,6 АМК, через 18 АМК(5 витков) структурная конфигурация повторяется. Фиксируется спираль водородными связями и они удерживают ее как сжатую пружину, водородные связи от 1 к 4 амк в пределах 1 п/п цепи. β-складчатый слой. В основе лежат водородные связи между п/п цепями, цепи лежат антипараллельно. Неупорядоченная структура: α+ β, α / β. Тип укладки зависит от АМК, т.к. ряд амк способствуют образованию α-спирали (глу, лей,тир), ряд – препятствует (про, о-про) 3 структура –упаковка п/п цепи в пространстве (архитектура), при этом радикалы амк занимают наиболее выгодные положения. Выделяют 2 типа: глобулярные и фибриллярные. Третичная стр-ра возникает автоматически и решающим при этом является взаимодействие радикалов с молекулами окр.рас-ля, влияние рН, взаимодей-ие с др.в-вами. 2 типа связей:1)ковалентно-пептидные дисульфидные 2)слабые водородные, ионные взаимодействия, гидрофобные. В основе формир.простр.стр-ры лежат доменные принципы. Домен – обособленная часть молекулы, облад.структ. и функц.автономией. В виде доменов формируются Б, имеющие более 200 амк в полипептидной цепи. Белки состоят из 1 п/п цепи, имеющие 3 уровня организации – субъединица или протомер. Такие белки выполняют свои нативные ф-ии. 4 структура – ассоциация протомеров определенным образом ориентированных относительно друг друга. Протомеры объединяются в олигомер. На поверхности протомеров формируются контактные участки, которые комплиментарно присоединяются друг к другу. Поцесс форм-ия пространственной стр-ры – фолдинг Б. Он контр-ся Б-шаперонами, кот. предотвращают взаимодействие несформированных конформаций. Содержание остаточного азота в крови. Компоненты остаточного азота. Содержание небелкового азота 15-25 ммоль/л. Небелковый азот крови представлен мочевиной 50%, амк 25%, эрготионеином 8%, мочевой кислотой 4%, креатином 5%, креатинином 2,5% - источник энергии АТФ, аммиаком и индиканом 0,5%, а также полипептидами, нуклеатидами, нуклеазами, глутатионом, билирубином, холином, гистидином. Т.о., в состав небелкового азота крови входит азот конечных продуктов обмена простых и сложных белков. Небелковый азот крови называют также остаточным азотом, т.е. остающимся в фильтрате после осаждения белков (реакция осаждения белков плазмы крови). Главным конечным продуктом обмена белков является мочевина (образуется в печени), норма = 3,3-6,6 ммоль. Нарастания содержания мочевины в крови до 1,6-20 ммоль/л – является признаком нарушения функции почек средней тяжести, до 35 – тяжелой тяжести, свыше 50 ммоль/л – очень тяжелое нарушение с неблагоприятным прогнозом. Азот мочевины/остаточный азот * 100%. Норма меньше 48%. При почечной недостаточности повышается до 90%, а при нарушении мочеобразовательной функции печени снижается до менее 45%. Увеличение мочевины говорит о усиленном распаде белков тканей, уменьшение количества мочевины – при безбелковой диете, нарушении функции печени. Мочевая кислота является конечным продуктом обмена пуриновых оснований в норме 0,18-0,24 ммоль/л. гиперурикэмия – повышение содержания мочевой кислоты – симптом подагры – 0,5-0,9 ммоль/л.
Билет №7. Аэробное окисление У, схема процесса. Образование ПВК из глю, последовательность р-ий. Челночный механизм транспорта водорода. Гликоген распадается в печени и в мышцах, 1.глю → 2ПВК +2АТФ+НАДН (анаэробный процесс,10 р-ий) 2.2ПВК + 1/2О2 → СН3-С(О)-SКоА+2НАДН 3. СН3-С(О)-SКоА В ЦТК, либо +Н2О → СО2 + 4Н2 Челночные механизмы: существуют так называемые челночные механизмы, с помощью которых электроны, отщепляемые от НАДН при его окислении в цитоплазме, могут проникать внутрь митохондрий и поступать в дыхательную цепь. 1)малатаспартатный: под действием цитоплазмат. Малат-ДГ НАДН окисляется оксалацетатом, кот при этом вос-ся до малата. Малат проникает внутрь митохондрий. Здесь в матриксе митохондрии происходит обратная реакция под действием малат-ДГ и образованный в результате ее оксалацетат снова переходит с помощью механизма активного переноса через мембраны митохондрий в цитоплазму. 2)глицерофосфатный: с помощью фермента глицеро-ф-ДГ, коФ кот явл НАДН, продукт гликолиза диоксиацетон-ф восстанавливается в глицеро-ф. Глицерофосфат свободно проникает через мембраны митохондрий, захватив с собой электроны от НАДН, который превратился в НАД. Здесь под действием внутрнмитохондриальной глицеро-ф-ДГ, кот отличается от глицеро-ф-ДГ цитоплазмы, происходит обратная реакция превращения глицеро-ф в диоксиацетон-ф. Глицеро-ф-ДГ митохондрий в качестве кофермента использует не НАД+, а флавиновую группировку. Образовавшийся диоксиацетон-ф проникает через мембраны митохондрий обратно в цитоплазму, и цикл окисления цитоплазматической НАДН таким образом замыкается. Флавиновая глицеро-ф-ДГ а передает полученные в результате окисления глицеро-ф электроны на КоФ О дыхательной цепи. Т.о. в процессе их переноса на молекулярный кислород происходит не три, а два акта фосфорилирования. Глицерофосфатный челночный механизм является односторонним в том смысле, что он обеспечивает перенос электронов только внутрь митохондрий.
Билет №8 Билет№9 Содержание Са и Р в плазме крови. Кальций. Общее содержание: плазма –2,3-2,75 ммоль/л, ионизированный – 1,05-1,3 ммоль/л, в эритроцитах- следы. Источники: молочные продукты, бобовые, злаки, орехи. Принимает участие в процессах нервно-мышечной возбудимости (как антагонист ионов калия), мышечного сокращения, свертываемости крови, образует структурную основу костного скелета, влияет на проницаемость клеточной мембраны. Понижение (гипокальциемия) вызывают: понижение функции паращитовидных желез,беременность,алиментарные дистрофии,рахит у детей, острый панкреатит, стеаторея при панкреатитах, закупорка желчных протоков, почечная недостаточность. Повышение конц-ции (гиперкальциемия) вызывает: повышение ф паращитовидных желез, переломы костей, полиартриты, метастазы злокачественных опухолей в кости, множественные миеломы, передозировка витамина D и кальция, желтухи. Фосфор относится к жизненно необходимым веществам, он входит в состав всех тканей организма, особенно мышц и мозга, участвует во всех видах обмена веществ, необходим для нормального функционирования нервной системы, сердечной мышцы и т.д.В тканях организма и пищевых продуктах фосфор содержится в виде фосфорной кислоты и органических соединений фосфорной кислоты (фосфатов). Основная его масса находится в костной ткани в виде фосфата кальция, остальной фосфор входит в состав мягких тканей и жидкостей. В мышцах происходит наиболее интенсивный обмен соединений фосфора. Фосфорная кислота участвует в построении молекул многих ферментов, нуклеиновых кислот и т.д. Содержание органических соединений фосфора в крови человека меняется в значительных пределах. Однако количество неорганического фосфора более или менее постоянно - 3 - 5,5 мг%. Увеличивается содержание неорганического фосфора при молочной диете, а также при ряде заболеваний почек, при переломах в стадии заживления. сахарном диабете, акромегалии, аддисоновой болезни и др.; уменьшается концентрация неорганического фосфора в сыворотке крови при повышении функции паращитовидных желез и ряде других заболеваний. Билет № 10 Билет №11. Митохондриальная цепь окисления кислорода. Образование электрохимического трансмембранного потенциала, его использование. В цикле трикарбоновых кислот электроны, освободившиеся при окислении, переносятся на акцепторные молекулы коферментов (НАД), которые вовлекают их далее в цепь переноса электронов (ЭТЦ - электронтранспортную цепь). Эти события внутри митохондрий происходят в их матриксе. Остальные реакции, связанные с дальнейшим переносом электронов и синтезом АТФ, связаны с внутренней митохондриальной мембраной, с кристами митохондрий. Освободившиеся в процессе окисления в цикле трикарбоновых кислот электроны, акцептированные на коферментах, переносятся затем в дыхательную цепь, где они соединяются с молекулярным кислородом, образуя молекулы воды. Дыхательная цепь представляет собой ряд белковых комплексов, встроенных во внутреннюю митохондриальную мембрану, и является главной системой превращения энергии в митохондриях. Здесь происходят последовательное окисление и восстановление элементов дыхательной цепи, в результате чего высвобождается небольшими порциями энергия. За счет этой энергии в трех точках цепи из АДФ и фосфата образуется АТФ. то есть происходит процесс окислительного фосфорилирования. При переносе электронов в митохондриальной мембране каждый комплекс дыхательной цепи направляет свободную энергию окисления на перемещение протонов (положительных зарядов) через мембрану, из матрикса в межмембранное пространство, что приводит к образованию разности потенциалов на мембране: положительные заряды преобладают в межмембранном пространстве, а отрицательные - со стороны матрикса митохондрий. При достижении определенной разности потенциалов (220 мВ) белковый комплекс АТФ-синтетазы начинает транспортировать протоны обратно в матрикс, при этом превращает одну форму энергии в другую: образует АТФ из АДФ и неорганического фосфата. Так происходит сопряжение окислительных процессов с синтетическим - с фосфорилированием АДФ. Пока происходит окисление субстратов, - идет сопряженный с этим синтез АТФ, то есть окислительное фосфорилирование. Энергия, выделяющаяся в ходе этих реакций, трансформируется в трансмембранный протонный потенциал. Фермент АТФ-синтаза использует этот градиент для синтеза АТФ, преобразуя его энергию в энергию химических связей.
Анализ желудочного сока. Переваривание белков начинается в желудке. рН желудочного сока 1,0-2,0 (1,5-2,5). Состав желудочного сока: HCl, пепсиноген, у детей ренин (химозин). Роль HCl в переваривании белков. 1) набухание и денатурация белков – нативный денатурирующий агент. 2) оказывает бактерицидное действие. 3) создает определенное значение рН. 4) стимулирует выработку секретина. 5) ускоряет всасывание железа. 6) активирует пепсиноген в пепсин в 2е стадии: а) частичный протеолиз б) аутокатализ. Пепсин – протеолитический фермент, вырабатывается в форме пепсиногена в слизистой оболочке желудка; отличается высокой устойчивостью в кислой среде, pI < 1, гидролизует преимущественно пептидные связи, образованные аминогруппами а/к (ароматических). Ренин – активный фермент, катализирует свертывание молока, т.е. превращение казеиногена в казеин. У новорожденных слабощелочная реакция рН=6. Виды кислотности желудочного сока: 1) общая кислотность – 40-60 титр. ед – свободная HCl, связанная с белками HCl, кислые фосфорнокислые соли, органические кислоты. 2) свободная HCl – количество Н+ и Сl- ионов 20-40 титр. ед. 3) связанная HCl – недиссоциированная соляная кислота белково-солянокислых комплексов 2-15 титр. ед. Сумма свободной и связанной HCl – общая соляная кислота, она немного меньше общей кислотности, т.к. 2-5 титр. ед составляет кислотность, обусловленная кислыми фосфатами.
Билет №12 Билет №13 Билет №14. Билет № 15 Образование макроэргических соединений в цепи тканевого дыхания. Характеристика процесса с помощью коэффициента Р/О. Разобщение окисления и фосфорилирования в дых.цепи. Чрезвычайно важной функцией цепи дых.катализаторов, связанных с внутренней мембраной митохондрий, наряду с переброской электронов от субстратов дыхания на кислород, является аккумуляция части освобождающейся энергии (около 50 %) в фосфатных связях высокоэргических (или макроэргических) соединений (гл.образом АТФ). Процесс сопряжения тканевого дыхания и фосфорилирования получил название окислительного фосфорилирования. Синтез АТФ из АДФ и фосф.к-ты осуществляется в митохондриях при миграции электронов от субстрата к кислороду ч/з цепь дых.катализаторов. при этом обнаружено,что отношение Р/О, т.е. число молекул неорганического фосфата,перешедших в органическую форму (АТФ), в расчете на кажый поглощенный атом кислороа близко к 3. Разобщение окисления и фосфорилирования — это состояние, при котором энергия, освобождающаяся в процессе транспорта электронов по дыхательной цепи, не способна аккумулироваться в макроэргических связях АТФ и поэтому выделяется в виде теплоты. Для этого состояния характерны уменьшение ресинтеза АТФ и увеличение потребления кислорода клетками. В основе разобщения окисления и фосфорилирования могут лежать следующие механизмы: а) уменьшение градиента концентраций ионов водорода между матриксом митохондрий и цитоплазмой; б) уменьшение трансмембранного электрического потенциала на внутренней митохондриальной мембране; в) нарушения АТФ-синтетазного ферментного комплекса; г) использование энергии градиента концентраций ионов водорода не на синтез АТФ, а на другие цели (транспорт ионов кальция из цитоплазмы в митохондрии, транспорт фосфата, АДФ, АТФ и др.). Билет №16 Билет№ 17 1. Основные пути использования амк после всасывания. Синтез креатина, креатинфосфата, биологическая роль. Образование креатинина. Судьба амк: 1) на биосинтез Б 2) превр в Л и У 3) окисл до конечных продуктов 4)используются на синтез N-содержащих небелковых соединений: азотистые основания, гормоны(катехоламины, йодтироксины), пептид(глутатион), креатин. Синтез креатина. 2 тадии, исп 3 амк (арг, гли, мет) I стадия (в почках) NH2-C(NH)-NH-(CH2)3-CH(NH2)-COOH арг + NH2 - CH2 COOH гли (глицинамидинотрансфераза) → NH2-C(NH)-NH-CH2-COOH гуанидинацетат + (NH2)(СООН)СН-(CH2)3 - NH2 орнитин II стадия (в печени) NH2-C(NH)-NH-CH2-COOHгуанидинацетат +СН3–S(adenosyle)-(CH2)2-CH(NH2)-COOH 5-аденозилметионин→ NH2-C(NH)-N(СН3)- CH2-COOH креатин + аденозилгомоцистеин →гомоцистеин→цистеин Гомоцистеин – 21ая амк, не участвующая в синтезе Б. Из печени креатин транспортируется в мыш.тк, сердце, г.м., и там подвергается фосфорилированию, с образованием креатинфосфата – это макроэрг, кот используется как запасная форма фосфата, кот транспортируется на АДФ с ресинтезом АТФ, катализ – креатинфосфокиназа, она им 3 изофермента(ММ, МВ, ВВ).
Нормальные величины содержания креатина в плазме крови: 15, 25-76,25 мкмоль/л, т.е. 13-53 мкмоль/л у мужчин, 27-71 мкмоль/л у женщин. При концентрации креатина более 122 мкмоль/л он выделяется с мочой. Креатин в моче здоровых людей практически отсутствует (ммоль/сут): новорожденные – следы, 1 мес – 0,07, 1 год – 0,4, 5 лет – 0,5, 10 лет 1,5, взрослые – «-». Повышение содержания в моче возможно при: миопатиях; прогрессирующей мышечной дистрофии; поражениях печени; сахарном диабете; эндокринных заболеваниях (гипертиреоз, болезнь Аддисона, акромегалия); инфекционных заболеваниях; лихорадочных состояниях; красной волчанке; переломах; ожогах; белковом голодании; беременности; у детей.
Гидролиз креатинфосфата ведет к образованию креатинина. Креатинин образуется также при неферментативной дегидратации креатина (2% от общего количества креатинина). Нормальные величины (мкмоль/л): новорожденные – 27-88, 1год – 18-35, подростки – 44-88, мужчины 44-100, женщины 44-88. Концентрация креатинина в крови является довольно постоянной величиной, не зависящей от питания и других факторов. Поэтому для диагностики используется клиренс эндогенного креатинина для оценки клубочковой фильтрации почек. Повышение концентрации в крови при: нарушении функции почек (острая и хроническая недостаточность), мочекаменной болезни. Креатинин попадает в мочу путем клубочковой фильтрации. Суточное выделение креатинина индивидуально и постоянно, отражает мышечную массу. Содержание в моче (ммоль/л): 0,08 – новорожденные, 0,4 – 1 мес, 0,7 – 1 год, 2,7 – 5 лет, 6,0 – 10 лет, 7,1-17,7 – взрослые. При тяжелом нарушении функции почек содержание креатинина достигает 800-900 мкмоль/л. Клиренс – очищение. Креатинин не реабсорбируется в почках, по его уровню можно судить о скорости клубочковой фильтрации. Отклонение говорит о нарушении функции деятельности почки. Понижение содержания креатинина говорит о почечной недостаточности. Билет № 18 Билет№19 Билет №20 Билет№21 Парные соединения мочи. микробные ферменты кишечника вызывают постепенное разрушение боковых цепей циклических аминокислот, в частноститирозина и триптофана, с образованием ядовитых продуктов обмена – соответственно крезола и фенола, скатола и индола. После всасывания эти продукты через воротную вену попадают в печень, где подвергаются обезвреживанию путем химического связывания с серной или глюкуроновой кислотой с образованием нетоксичных, так называемых парных, кислот (например, фенолсернаякислота или ска-токсилсерная кислота). Последние выделяются с мочой. Индол (как и скатол) предварительно подвергается окислению в индоксил (соответственно скатоксил), который взаимодействует непосредственно в ферментативной реакции с ФАФС или с УДФГК. Так, индол связывается в виде эфиросерной кислоты. Калиевая соль этой кислоты получила название животного индикана, который выводится с мочой. По количеству индикана в моче человека можно судить не только о скорости процесса гниения белков в кишечнике, но и о функциональном состоянии печени. О функции печени и ее роли в обезвреживании токсичных продуктов часто также судят по скорости образования и выделения гиппуровой кислоты с мочой после приема бензойной кислоты Билет№22 Минеральные вещества мочи. В моче содержатся практически все минеральные вещества, которые входят в состав крови и других тканей организма. Из 50–65 г сухого остатка, образующегося при выпаривании суточного количества мочи, на долю неорганических компонентов приходится 15–25 г. Ионы натрия и хлора. В норме около 90% принятых с пищей хлоридов выделяется с мочой (8–15 г NaCl в сутки). При ряде патологических состояний (хронический нефрит, диарея, острый суставной ревматизм и др.) выведение хлоридов с мочой может быть снижено. Максимальная концентрация ионов Na+и Сl– (в моче по 340 ммоль/л) может наблюдаться после введения в организм больших количеств гипертонического раствора. Ионы калия, кальция и магния. Многие исследователи считают, что практически все количество ионов калия, которое имеется в клубочковом фильтрате, всасывается обратно из первичной мочи в проксимальном сегменте нефрона. В дистальном сегменте происходит секреция ионов калия, которая в основном связана с обменом между ионами калия и водорода. Следовательно, обеднениеорганизма калием сопровождается выделением кислой мочи. Ионы Са2+ и Mg2+ выводятся через почки в небольшом количестве (см. табл. 18.1). Принято считать, что с мочой выделяется лишь около 30% всего количества ионов Са2+ и Mg2+, подлежащего удалению из организма. Основная масса щелочноземельных металловвыводится с калом. Бикарбонаты, фосфаты и сульфаты. Количество бикарбонатов в моче в значительной мере коррелирует с величиной рН мочи. При рН 5,6 с мочой выделяется 0,5 ммоль/л, при рН 6,6 – 6 ммоль/л, при рН 7,8 – 9,3 ммоль/л бикарбонатов. Уровень бикарбонатовповышается при алкалозе и понижается при ацидозе. Обычно с мочой выводится менее 50% всего количества выделяемых организмомфосфатов. При ацидозе выведение фосфатов с мочой возрастает. Повышается содержание фосфатов в моче при гиперфункции паращитовидных желез. Введение в организм витамина D снижает выделение фосфатов с мочой. Серосодержащие аминокислоты: цистеин, цистин и метионин – являются источниками сульфатов мочи. Эти аминокислотыокисляются в тканях организма с образованием ионов серной кислоты. Общее содержание сульфатов в суточном количестве мочиобычно не превышает 1,8 г (в расчете на серу). Аммиак. Как отмечалось, существует специальный механизм образования аммиака из глутамина при участии фермента глутаминазы, которая в большом количестве содержится в почках. Аммиак выводится с мочой в виде аммонийных солей. Содержание последних вмоче человека в определенной степени отражает кислотно-основное равновесие. При ацидозе их количество в моче увеличивается, а при алкалозе снижается. Содержание аммонийных солей в моче может быть снижено при нарушении в почках процессов образованияаммиака из глутамина. Билет№23 1.Образование и обезвреживание аммиака. Биосинтез мочевины, последовательность реакций. Роль печени в мочевинообразовании. Возрастные особенности. Источники аммиака: 1)дезаминирование АК(в тканях и кишечнике) 2)дезаминирование аминов 3)дезаминирование азотистых оснований Аммиак в крови – 12-65мкмоль/л(10-120мкг%), в моче – 35,7 – 71,4ммоль/сут(0,5-1,0г) Аммиак исключительно токсичен. Обезвреживание: 1)образование амидов(локально) Гутамат + NH3,NH4+,АТФ, магний++, глутамин-синтетаза®глутамин +АДФ +Фн Глутамин®почки(–аммиак, глутаминаза) Глутамат ®-аммиак®2аммоний+®аммониогенез ®альфа-КГ ®печень, синтез мочевины ®синтез пуринов, пиримидинов. 2)восстановительное аминирование А. альфа-КГ (глутаматДГ, аммоний, 2Н, НАДФ)®глутамат, Н2О, НАДФН Б. глутамат + ПВК (трансаминирование)Ûальфа-КГ +ала 3)образование аммонийных солей 4)синтез мочевины. 2.cудьба всосавшихся простых и сложных липидов. Жировые депо. Липотропные вещества и их роль. Липотропные вещества являются важными факторами, способствующими нормализации жирового и, в частности, холестеринового обмена в организме. Они стимулируют выделение жира из печени и его окисление, что ведет к уменьшению ее жировой инфильтрации. Билет№24 1.Процессы образования конечных продуктов обмена простых белков. Основные источники аммиака. Роль глутамина в оезвреживании аммиака и синтезе ряда соединений(как донор амидной группы). Источники аммиака: 1)дезаминирование АК(в тканях и кишечнике) 2)дезаминирование аминов 3)дезаминирование азотистых оснований Аммиак в крови – 12-65мкмоль/л(10-120мкг%), в моче – 35,7 – 71,4ммоль/сут(0,5-1,0г) Аммиак исключительно токсичен. Обезвреживание: 1)образование амидов(локально) Гутамат + NH3,NH4+,АТФ, магний++, глутамин-синтетаза®глутамин +АДФ +Фн Глутамин®почки(–аммиак, глутаминаза) Глутамат ®-аммиак®2аммоний+®аммониогенез ®альфа-КГ ®печень, синтез мочевины ®синтез пуринов, пиримидинов. 2)восстановительное аминирование А. альфа-КГ (глутаматДГ, аммоний, 2Н, НАДФ)®глутамат, Н2О, НАДФН Б. глутамат + ПВК (трансаминирование)Ûальфа-КГ +ала 3)образование аммонийных солей 4)синтез мочевины. Билет№25 Глюкозурия и ее причины. Обычно присутствие глюкозы в моче (глюкозурия) является результатом нарушения углеводного обмена вследствие патологических изменений в поджелудочной железе (сахарный диабет, острый панкреатит и т.д.). Реже встречается глюкозурия почечного происхождения, связанная с недостаточностью резорбции глюкозы в почечных канальцах. Как временное явление глюкозурия может возникнуть при некоторых острых инфекционных и нервных заболеваниях, после приступов эпилепсии, сотрясения мозга. Отравления морфином, стрихнином, хлороформом, фосфором также обычно сопровождаются глюкозурией. Наконец, необходимо помнить о глюкозурии алиментарного происхождения, глюкозурии беременных и глюкозурии при нервных стрессовых состояниях (эмоциональная глюкозурия). Билет№26 Билет№27 Обмен триптофана. Образование |
||||
Последнее изменение этой страницы: 2016-09-20; просмотров: 362; Нарушение авторского права страницы; Мы поможем в написании вашей работы! infopedia.su Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Обратная связь - 18.188.154.238 (0.012 с.) |