Мы поможем в написании ваших работ!



ЗНАЕТЕ ЛИ ВЫ?

Переваривание и всасывание нуклеопротеинов в ЖКТ. Судьба всосавшихся продуктов.

Поиск

Переваривание нуклеопротеинов и всасывание продуктов их распада осуществляются в пищеварительном тракте. Под влиянием ферментов желудка, частично соляной кислоты, нуклеопротеины пищи распадаются на полипептиды и нуклеиновые кислоты; первые в кишечнике подвергаются гидролитическому расщеплению до свободных аминокислот. Распад нуклеиновых кислот происходит в тонкой кишке в основном гидролитическим путем под действием ДНК- и РНКазы панкреатического сока. Продуктами реакции при действии РНКазы являются пуриновые и пи-римидиновые мононуклеотиды, смесь ди- и тринуклеотидов и резистентные к действию РНКазы олигонуклеотиды. В результате действия ДНКазы образуются в основном динуклеотиды, олигонуклеотиды и небольшое количество мононуклеотидов. Полный гидролиз нуклеиновых кислот до стадии мононуклеотидов осуществляется, очевидно, другими, менее изученными ферментами (фосфодиэстеразами) слизистой оболочки кишечника.

 

В отношении дальнейшей судьбы мононуклеотидов существует два предположения. Считают, что мононуклеотиды в кишечнике под действием неспецифических фосфатаз (кислой и щелочной), которые гидролизируют фосфоэфирную связь мононуклеотида («нуклеотидазное» действие), расщепляются с образованием нуклеозидов и фосфорной кислоты и в таком виде всасываются. Согласно второму предположению, мононуклеотиды всасываются, а распад их происходит в клетках слизистой оболочки кишечника. Имеются также доказательства существования в стенке кишечника нуклеотидаз, катализирующих гидролитический распад моно-нуклеотидов. Дальнейший распад образовавшихся нуклеозидов осуществляется внутри клеток слизистой оболочки преимущественно фосфороли-тическим, а не гидролитическим путем.

 

Всасываются преимущественно нуклеозиды, и в таком виде часть азотистых оснований может быть использована для синтеза нуклеиновых кислот организма. Если происходит дальнейший распад нуклеозидов до свободных пуриновых и пиримидиновых оснований, то гуанин не используется для синтетических целей. Другие основания, как показывают опыты с меченными по азоту аденином и урацилом, в тканях могут включаться в состав нуклеиновых кислот. Однако экспериментальные данные свидетельствуют, что биосинтез азотистых оснований, входящих в состав нуклеиновых кислот органов и тканей, протекает преимущественно, если не целиком, de novo из низкомолекулярных азотистых и безазотистых предшественников.

Биосинтез триацилглицеринов, способы синтеза, последовательность реакций. Роль инсулина, адреналина, глюкагона в регуляции синтеза. Значение процесса.

Известно, что скорость биосинтеза жирных кислот во многом определяется скоростью образования триглицеридов и фосфолипидов, так как свободные жирные кислоты присутствуют в тканях и плазме крови в небольших количествах и в норме не накапливаются.

Синтез триглицеридов происходит из глицерина и жирных кислот (главным образом стеариновой, пальмитиновой и олеиновой). Путь биосинтеза триглицеридов в тканях протекает через образование α-глице-рофосфата (глицерол-3-фосфата) как промежуточного соединения.

В почках, а также в стенке кишечника, где активность фермента глицеролкиназы высока, глицерин фосфорилируется за счет АТФ с образованием глицерол-3-фосфата:

 

В жировой ткани и мышцах вследствие очень низкой активности глицеролкиназы образование глицерол-3-фосфата в основном связано с процессами гликолиза и гликогенолиза. Известно, что в процессе гли-колитического распада глюкозы образуется дигидроксиацетонфосфат (см. главу 10). Последний в присутствии цитоплазматической глицерол-3-фос-фатдегидрогеназы способен превращаться в глицерол-3-фосфат:

 

Отмечено, что если содержание глюкозы в жировой ткани понижено (например, при голодании), то образуется лишь незначительное количество глицерол-3-фосфата и освободившиеся в ходе липолиза свободные жирные кислоты не могут быть использованы для ресинтеза триглицеридов, поэтому жирные кислоты покидают жировую ткань. Напротив, активация гликолиза в жировой ткани способствует накоплению в ней триглицеридов, а также входящих в их состав жирных кислот. В печени наблюдаются оба пути образования глицерол-3-фосфата.

Образовавшийся тем или иным путем глицерол-3-фосфат последовательно ацилируется двумя молекулами КоА-производного жирной кислоты (т.е. «активными» формами жирной кислоты – ацил-КоА). В результате образуется фосфатидная кислота (фосфатидат):

 

Как отмечалось, ацилирование глицерол-3-фосфата протекает последовательно, т.е. в 2 этапа. Сначала глицерол-3-фосфат-ацилтрансфераза катализирует образование лизофосфатидата (1-ацилглицерол-3-фосфата, а затем 1-ацилглицерол-3-фосфат-ацилтрансфераза катализирует образование фосфатидата (1,2-диацилглицерол-3-фосфата).

Далее фосфатидная кислота гидролизуется фосфатидат-фосфогидро-лазой до 1,2-диглицерида (1,2-диацилглицерола):

 

Затем 1,2-диглицерид ацилируется третьей молекулой ацил-КоА и превращается в триглицерид (триацилглицерол). Эта реакция катализируется диацилглицерол-ацилтрансферазой:

 

Синтез триглицеридов (триацилглицеролов) в тканях происходит с учетом двух путей образования глицерол-3-фосфата и возможности синтеза триглицеридов в стенке тонкой кишки из β-моноглицеридов, поступающих из полости кишечника в больших количествах после расщепления пищевых жиров.

Установлено, что большинство ферментов, участвующих в биосинтезе триглицеридов, находятся в эндоплазматическом ретикулуме, и только некоторые, например глицерол-3-фосфат-ацилтрансфераза,– в митохондриях.

Регуляция: Адреналин и норадреналин увеличивают скорость липолиза в жировой ткани; в результате усиливается мобилизация жирных кислот из жировых депо и повышается содержание неэстерифи-цированных жирных кислот в плазме крови. Как отмечалось, тканевые липазы (триглицеридлипаза) существуют в двух взаимопревращающихся формах, одна из которых фосфорилирована и каталитически активна, а другая – нефосфорилирована и неактивна. Адреналин стимулирует через аденилатциклазу синтез цАМФ. В свою очередь цАМФ активирует соответствующую протеинкиназу, которая способствует фосфорилированию липазы, т.е. образованию ее активной формы. Следует заметить, что действие глюкагона на липолитическую систему сходно с действием кате-холаминов.

Гормоны и их классификация. Представления об основных механизмах гормональной регуляции метаболизма.

Г – это химические посредники, регулирующие обмен в-в и развитие органзма.

Биологические признаки:

1. Дистантность действия

2. Строгая специфичность, т.е. один Г нельзя заменить другим

3. Высокая биологическая активность(в крови конц.10-6 – 10-11ммоль/л)

Г оказывают действие путями:

- изменяют проницаемость клеточных мембран

- изменяют скорость ферментативных р-ций – модулируют активность готовых мо-д Б-ферментов, это Г срочной регуляции(сек, мин)

- изменяют скорость синтеза Б-ферментов – Г медленной регуляции.

Классификация:

1) по химич.природе:

1. производные АК – адреналин(эпинефрин), норадреналин, тироксин и др.

2. пептидные(елковые) – АКТГ, ЛТГ, МЦС, инсулин

3. стероидные – половые, кортикостероиды.

2) по механизму передачи горм.сигнала в кл-мишени:

1. стероидные Г и тироксин. Их рецепторы располагаются в цитозоле клеток; они проникают во внутрь и реализуют гормональный эффект по цитозольному механизму.

2. пептидные и адреналин; рецепторы к этим Г на пов-ти клет.мембран, и Г не проникают вутрь клеток.

3) в звисимости от посредника:

2. Г реализуют свой эфф.через циклические нуклеотиды(цАМФ, цГМФ)

3. с участием ионизированного Са++ и инозитолполифостфатов (ИПФ)

Креатинурия и ее причины.

КРЕАТИНУРИЯ— появление креатина в моче. Моча здорового мужчины почти не содержит креатина, у женщин и детей — незначительная физиологическая креатинурия; у женщин она увеличивается при беременности, лактации. Избыточное содержание в пище мяса может привести к экзогенной креатинурией.

Основной причиной патологической креатинурии яв­ляются поражения мышц: миозиты, мышечная дистрофия, тяжелая миастения, тонические и клонические судороги.

Кроме того, креатинурия отмечается при ряде эндокринных заболеваний — диабете, гипертиреозе, акромегалии, а также при ацидозе, алкалозе, авитаминозах Е и С.

В норме образующийся в мышцах креатин ангидрируется н выделяется с мочой в виде креатинпна (около 2 г в сутки). Т. к. возможность организма ангидрировать креатин ограничена, возникновение креатинурии может иметь место как при повышенном распаде белка, так и при нарушении нормального превращения креатина в креатинин.

Определение креатина в моче производят путем превращения его в креатинин при помощи гидролиза 1 н. раствором соляной кислоты. Определяют количество креати­нина в моче реакцией Яффе до и после гидролиза. Вычитанием первой величины из второй узнают содержание в моче креатина.

Билет№29



Поделиться:


Последнее изменение этой страницы: 2016-09-20; просмотров: 526; Нарушение авторского права страницы; Мы поможем в написании вашей работы!

infopedia.su Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Обратная связь - 18.216.126.33 (0.009 с.)