Гормональная регуляция гомеостаза кальция в обеспечении процессов минерализации и деминерализации. 


Мы поможем в написании ваших работ!



ЗНАЕТЕ ЛИ ВЫ?

Гормональная регуляция гомеостаза кальция в обеспечении процессов минерализации и деминерализации.



Парагормон и кальцитонин

Гормоны секретируются клетками паращитовидной железы. Местом синтеза кальцитонина является также щитовидная железа.

Парагормон был получен в частично очищенном состоянии в 1925 году из паращитовидной железы быка. Он представляет собой простую полипептидную цепь, состоящую из 84 аминокислотных остатков с молекулярной массой 9500 Да; период полураспада около 2 мин. Ген, кодирующий биосинтез парагормона, локализуется на 11-й хромосоме (11р15).

Парагормон образуется на рибосомах в виде препропарагормона – полипептида, состоящего из 115 аминокислотных остатков. В результате локального протеолиза отщепляется 31 аминокислотный остаток с N-конца и образуется активный гормон, который запасается в секреторных гранулах.

Регуляция секреции парагормона осуществляется несколькими механизмами. В течение короткого времени биосинтез парагормона регулируется ионизированным кальцием, а в течение длительного времени – 1,25(ОН)2 D3 - совместно с кальцием. Скорость секреции обратно пропорциональна концентрации в плазме крови.

Метаболизм и деградация парагормона осуществляется в основном в печени (около 62-70%), а также в почках (30-38%).

Парагормон оказывает многообразное действие в зависимости от ткани-мишени. Все это позволило L. Mallette (1991) высказать мнение, что парагормон является прогормоном, а его фрагменты обладают биологическим действием. Считается, что его аминотерминальный домен (аминокислотные остатки 1-34) ответствен за регуляцию минерального обмена посредством взаимодействия с соответствующими рецепторами в костях и почках; карбокситерминальный домен (аминокислотные остатки 53-84) – за регуляцию функции остеокластов, а средний домен (аминокислотные остатки 28-48), возможно, за транспорт кальция и фосфора

Парагормон взаимодействует с плазматическими рецепторами, которые являются гликопротеинами с молекулярной массой около 800 кДа и состоят из 585-594 аминокислотных остатков. Рецептор парагормона, как и все другие рецепторы, относящиеся к семейству рецепторов, оперирующих через G-белок, имеет 3 цепи внеклеточного фрагмента, 7 трансмембранных фрагментов и внутриклеточную часть рецептора, также представленную 3 петлями полипептидной цепочки.

Такое взаимодействие приводит к активации аденилатциклазы и повышению синтеза цАМФ, который активирует протеинкиназу, фосфолипазу С, диацилглицерин, инозитолтрифосфат и участвует в регуляции транспорта ионов кальция, натрия и калия через клеточные мембраны.

Парагормон оказывает множественное действие на костную ткань. Он опосредованно активирует ферменты коллагенозу и глюкуронидазу, что вызывает деструкцию органических компонентов кости, в частности коллагена и гликозамингликанов. В минеральных компонентах костной ткани под действием парагормона происходит солюбилизация гидроксиапатита и высвобождение в кровь кальция и фосфора.

Было установлено, что парагормон активирует процессы транскрипции в остеокластах – клетках, резорбирующих кости. Влияние парагормона на резорбцию костной ткани на пострецепторном уровне осуществляется в основном через инозитолтрифосфат и диацилглицерин, но не через цАМФ, которые образуются посредством активации фосфолипазы С и ионов Са.

Наряду с этим парагормон оказывает влияние на обмен фосфора и магния.

Кальций всасывается в верхнем отделе тонкого кишечника. Это активный процесс, осуществляемый транспортным кальцийсвязывающим белком, который активизируется 1,25-дигидроксивитамином D. Всасывание кальция в кишечнике усиливается при увеличении поступления кислот с пищей, диете с высоким содержанием белка, саркоидозе, беременности, тогда как щелочи, глюкокортикоиды, избыток фосфатов и оксалатов снижают его всасывание в кишечнике.

Свое влияние парагормон на натрий-фосфатный котранспорт оказывает путем повышения образования цАМФ и путем активизации фосфолипазы С и образования диацилглицерина и инозитолтрифосфата.

Кальцитонин был впервые получен С. Н. Коопом и соавторами в 1962 году. Кальцитонин человека представляет собой полипептид, состоящий из 32 аминокислот с мол. м. 3000 Да с периодом полураспада около 5 мин. Гормон может образовывать путем ковалентной связи димерные и, не исключено, полимерные формы, однако биологически активной является только мономерная форма гормона. Было показано, что в процессе трансляции образуется препрокальцитонин и прокальцитонин с мол. м. около 13 кДа.

Специфическим стимулятором секреции кальцитонина является повышение концентрации кальция в крови более 2,25 ммоль/л (9 мг/100 мл). Кроме того, стимуляторами секреции кальцитонина являются катехоламины, осуществляющие свое действие через β-адренергические рецепторы, холецистокинин, глюкагон, гастрин. Глюкагон и катехоламины, взаимодействуя с рецепторами, увеличивают содержание цАМФ, который стимулирует секрецию кальцитонина, так же как и парагормона, т.е. цАМФ является внутриклеточным медиатором секреции кальцитонина. Кальцитонин метаболизируется в почках, печени и, возможно, в костной ткани.

Биологический эффект кальцитонина проявляется снижением уровня кальция и фосфора в крови, что является следствием влияния кальцитонина на костную ткань и почки. В кости кальцитонин угнетает процессы резорбции кальция. Это проявляется снижением экскреции гидроксипролина и содержания кальция в крови. Одновременное уменьшение фосфора в сыворотке крови является результатом снижения мобилизации фосфора из кости и непосредственной стимуляции поглощения фосфора костной тканью. Кальцитонин ингибирует активность и количество остеокластов. Уже через 1 ч после введения кальцитонина уменьшается образование остеокластов из клеток-предшественников. Механизм действия кальцитонина опосредуется цАМФ и активацией протеинкиназ, что сопровождается изменением активности щелочной фосфатазы, пирофосфатазной активности и активности ферментов.

 

42 Биохимия крови. Состав крови. Буферные системы крови. Белки плазмы крови. Значение определения нормальных и патологических компонентов крови.

Кровь - жидкая внутренняя среда организма. Общий объём крови взрослого человека составляет 5-6 л. Кровь состоит из жидкой части - плазмы, составляющей 55% её общего объёма, и форменных элементов, к которым относят эритроциты, лейкоциты и тромбоциты.

Благодаря работе сердца кровь циркулирует по замкнутой системе кровеносных сосудов и осуществляет транспорт различных химических веществ. Она переносит кислород из лёгких к тканям и углекислый газ из тканей в лёгкие в составе гемоглобина эритроцитов (дыхательная функция); доставляет продукты переваривания пищи из кишечника в ткани (трофическая функция); уносит конечные продукты обмена из тканей в выделительные органы (выделительная функция); перемещает промежуточные продукты обмена веществ, синтез и использование которых происходит в разных органах.

Кровь участвует в регуляции обмена веществ, доставляя сигнальные молекулы от органов внутренней секреции к тканям-мишеням.

Защитная функция крови имеет две стороны. Во-первых, в ней содержатся клеточные (лейкоциты) и гуморальные (антитела) элементы иммунного реагирования, которые защищают организм от любой чужеродной молекулы. Во-вторых, это способность крови свёртываться. При повреждении сосуда прерывается замкнутость циркуляции крови, а уменьшение количества крови может привести к серьёзным нарушениям функций клеток, вплоть до их гибели. Кровь здорового человека образует тромб в месте повреждения, который закупоривает просвет повреждённого сосуда и останавливает кровотечение.

Кровь поддерживает кислотно-щелочной и водный баланс организма. В норме рН крови составляет 7,36-7,4. Сохранение постоянства рН является важнейшей задачей, так как в кровь выделяется большое количество кислых (например, лактат, кетоновые тела, угольная кислота), а также основных (аммиак) продуктов метаболизма. Регуляцию рН осуществляют буферные системы крови, которые подробно рассмотрены в курсе физиологии.

Выполняя терморегуляторную функцию, кровь поддерживает постоянство температуры тела в разных его частях.

Химический состав растворимых в плазме крови веществ относительно постоянен, так как существуют мощные нервные и гуморальные механизмы, поддерживающие гомеостаз (постоянство внутренней среды). Растворимые вещества плазмы составляют около 10% массы крови, из них на долю белков приходится около 7%, на долю неорганических солей - 0,9%, остальную часть образуют небелковые органические соединения. Диапазон концентраций разных веществ плазмы крови у здорового человека представлен в специальных биохимических справочниках и является важнейшим материалом для медицинской биохимии.

Кровь связана со всеми тканями организма, поэтому возникновение патологического процесса в каком-либо органе приводит к изменению биохимических показателей крови. Эта информация может быть ценной при постановке диагноза и оценке эффективности лечебных мероприятий.

Белки плазмы крови:

Белковую фракцию плазмы составляет несколько десятков различных белков. Большая величина молекул дает основание относить их к коллоидам. Присутствие коллоидов в плазме обусловливает ее вязкость.

Белки плазмы различают по строению и функциональным свойствам. Их количественное и качественное определение производят специальными методами электрофореза, основанного на различной подвижности белков в электрическом поле, ультрацентрифугирования, иммуноэлектрофореза, при котором в электрическом поле передвигаются целые комплексы связанных со специфическими антителами молекул. В плазме крови человека содержится примерно 200—300 г белка. Белки плазмы делят на две основные группы: альбумины и глобулины. В глобулиновую фракцию входит фибриноген.

Альбумины. Альбумины составляют около 60% белков плазмы. Их высокая концентрация, большая подвижность при относительно небольших размерах молекулы, определяют онкотическое давление плазмы. Большая общая поверхность мелких молекул альбумина играет существенную роль в транспорте кровью различных веществ, таких как билирубин, соли тяжелых металлов жирные кислоты, фармакологические препараты (сульфаниламиды, антибиотики и др.). Известно, что, например, одна молекула альбумина может одновременно связать 25—50 молекул билирубина.

Глобулины. Эту группу белков электрофоретически, по показателям подвижности, разделяют на несколько фракций: α1—, α2—, β3— и γ—глобулины. С помощью иммуноэлектрофореза эти фракции подразделяют на мелкие субфракции более однородных белков. Так, во фракции α1—глобулинов имеются белки, простетической группой которых являются углеводы. Эти белки называются гликопротеинами. В составе гликопротеинов циркулирует около 60% всей глюкозы плазмы. Еще одна группа — мукопротеины — содержит мукополисахариды, фракцию аз составляет медьсодержащий белок церулоплазмин, в котором на каждую белковую молекулу приходится восемь атомов меди. Таким образом связывается около 90% всей содержащейся в плазме меди. В плазме имеются еще тироксинсвязывающий и другие белки.

β—глобулины. участвуют в транспорте фосфолипидов, холестерина, стероидных гормонов, металлических катионов. Они удерживают в растворе около 75% всех липидов плазмы. Металлсодержащий белоктрансферрин осуществляет перенос железа кровью. Каждая молекула трансферрина несет два атома железа.

γ—глобулины характеризуются самой низкой электрофоретической подвижностью. В эту фракцию белков входят различные антитела, защищающие организм от вторжения вирусов и бактерий. Количество этой фракции возрастает при иммунизации животных. К γ—глобулинам относятся также агглютинины крови.

Фибриноген занимает промежуточное положение между фракциями β— и γ—глобулинов. Этот белок образуется в клетках печени и ретикулоэндотелиальной системы; обладает свойством становиться нерастворимым в определенных условиях (под воздействием тромбина), принимать при этом волокнистую структуру, переходя в фибрин. Содержание фибриногена в плазме крови составляет всего 0,3%, но именно его переходом в фибрин обусловливается свертывание крови и превращение ее в течение нескольких минут в плотный сгусток. Сыворотка крови по своему составу отличается от плазмы только отсутствием фибриногена.

Альбумины и фибриноген образуются в печени, глобулины в печени красном костном мозгу, селезенке, лимфатических узлах. При нормальном питании в организме человека за 1 сут вырабатывается около 17 г альбумина и

5 г глобулина. Период полураспада альбумина составляет 10—15 сут глобулина — 5 сут.

Белки плазмы вместе с электролитами являются ее функциональными элементами. С их помощью в значительной степени осуществляется транспорт веществ из крови к тканям. К числу транспортируемых компонентов относятся питательные вещества, витамины, микроэлементы, гормоны, ферменты а также конечные продукты обмена веществ.

Из питательных веществ самую большую часть составляют липиды. Их концентрация колеблется в широком диапазоне, но максимальное содержание отмечается после приема жирной пищи. На относительно постоянном уровне удерживаются переносимая плазмой глюкоза (44,4—66,6 ммоль/л) и аминокислотные остатки (4 мг%). Витамины могут переноситься либо в связанному белками, либо в свободном виде. Их уровень в плазме также подвержен колебаниям и зависит не только от их содержания в продуктах питания и синтеза кишечной флорой, но и от наличия особого фактора, облегчающего их всасывание в кишке.

Микроэлементы циркулируют в плазме в виде металлсодержащих белков (Со и др.) или белковых комплексов (Fe). Из конечных продуктов обмена наибольшей концентрации, особенно при тяжелой мышечной работе и недостатке кислорода, достигает молочная кислота. Не использованные организмом и подлежащие удалению конечные продукты обмена веществ (мочевина, мочевая кислота, билирубин, аммиак) доставляются плазмой к почкам, где и удаляются с мочой.

Белки плазмы в силу способности связывать большое число циркулирующих в плазме низкомолекулярных соединений участвуют, кроме того, в поддержании постоянства осмотического давления. Им принадлежит ведущая роль в таких процессах, как образование тканевой жидкости, лимфы, мочи, всасывание воды.

49 Роль ферментов: щелочной и кислой фосфатазы в минеральном обмене тканей зуба.

 

43.Кровь. Основные функции. Буферные системы крови, механизм действия. Факторы, влияющие на кислотно-основное равновесие. Кровь - жидкая внутренняя среда организма. Общий объём крови взрослого человека составляет 5-6 л. Кровь состоит из жидкой части - плазмы, составляющей 55% её общего объёма, и форменных элементов, к которым относят эритроциты, лейкоциты и тромбоциты. Благодаря работе сердца кровь циркулирует по замкнутой системе кровеносных сосудов и осуществляет транспорт различных химических веществ. Она переносит кислород из лёгких к тканям и углекислый газ из тканей в лёгкие в составе гемоглобина эритроцитов (дыхательная функция); доставляет продукты переваривания пищи из кишечника в ткани (трофическая функция); уносит конечные продукты обмена из тканей в выделительные органы (выделительная функция); перемещает промежуточные продукты обмена веществ, синтез и использование которых происходит в разных органах. Кровь участвует в регуляции обмена веществ, доставляя сигнальные молекулы от органов внутренней секреции к тканям-мишеням. Защитная функция крови имеет две стороны. Во-первых, в ней содержатся клеточные (лейкоциты) и гуморальные (антитела) элементы иммунного.-вторых, это способность крови свёртываться. Кровь поддерживает кислотно-щелочной и водный баланс организма. В норме рН крови составляет 7,36-7,4. Сохранение постоянства рН является важнейшей задачей, так как в кровь выделяется большое количество кислых (например, лактат, кетоновые тела, угольная кислота), а также основных (аммиак) продуктов метаболизма. Выполняя терморегуляторную функцию, кровь поддерживает постоянство температуры тела в разных его частях. Растворимые вещества плазмы составляют около 10% массы крови, из них на долю белков приходится около 7%, на долю неорганических солей - 0,9%, остальную часть образуют небелковые органические соединения. Буферные системы – это соединения, противодействующие резким изменениям концентрации ионов Н+. Любая буферная система - это кислотно-основная пара: слабое основание (анион, А–) и слабая кислота -гемоглобиновая- В качестве кислой части буфера выступает оксигенированный гемоглобин H‑HbO2. Он имеет выраженные кислотные свойства и в 80 раз легче отдает ионы водорода, чем восстановленный Н‑Нb, выступающий как основание. - Бикарбонатная буферная система- При поступлении в кровь ионов H+ (т.е. кислоты) ионы бикарбоната натрия взаимодействуют с ней и образуется угольная кислота: -белковая-Белки плазмы, в первую очередь альбумин, играют роль буфера благодаря своим амфотерным свойствам. Их вклад в буферизацию плазмы крови около 5%. В кислой среде подавляется диссоциация СООН‑групп аминокислотных радикалов (в аспарагиновой и глутаминовой кислотах), а группы NH2 (в аргинине и лизине) связывают избыток Н+. При этом белок заряжается положительно. В щелочной среде усиливается диссоциация COOH‑групп, поступающие в плазму ионы Н+связывают избыток ОН–‑ионов и pH сохраняется. Белки в данном случае выступают как кислоты и заряжаются отрицательно. -фосфатная- Она образована гидрофосфатом (HPO42–) и дигидрофосфатом (H2PO4–). Первое соединение слабо диссоциирует и ведет себя как слабая кислота, второе обладает щелочными свойствами При взаимодействии кислот (ионов Н+) с двузамещенным фосфатом (HPO42‑) образуется дигидрофосфат. В результате концентрация ионов Н+ понижается

 

44.Белки крови. Особенности строения и функции иммуноглобулинов. Белки плазмы различают по строению и функциональным свойствам. В плазме крови человека содержится примерно 200—300 г белка. Белки плазмы делят на две основные группы: альбумины и глобулины. В глобулиновую фракцию входит фибриноген. Альбумины. Альбумины составляют около 60% белков плазмы. Их высокая концентрация, большая подвижность при относительно небольших размерах молекулы, определяют онкотическое давление плазмы. Большая общая поверхность мелких молекул альбумина играет существенную роль в транспорте кровью различных веществ, таких как билирубин, соли тяжелых металлов жирные кислоты, фармакологические препараты (сульфаниламиды, антибиотики и др.). Глобулины. Эту группу белков электрофоретически, по показателям подвижности, разделяют на несколько фракций. Во фракции α1—глобулинов имеются белки, простетической группой которых являются углеводы. Эти белки называются гликопротеинами. В составе гликопротеинов циркулирует около 60% всей глюкозы плазмы. Еще одна группа — мукопротеины — содержит мукополисахариды, фракцию аз составляет медьсодержащий белок церулоплазмин, β—глобулины. участвуют в транспорте фосфолипидов, холестерина, стероидных гормонов, металлических катионов. Металлсодержащий белоктрансферрин осуществляет перенос железа кровью. Фибриноген занимает промежуточное положение между фракциями β— и γ—глобулинов. Этот белок образуется в клетках печени и ретикулоэндотелиальной системы; обладает свойством принимать при этом волокнистую структуру, переходя в фибрин. Содержание фибриногена в плазме крови составляет всего 0,3%, но именно его переходом в фибрин обусловливается свертывание крови и превращение ее в течение нескольких минут в плотный сгусток. Гамма-глобулины В этой фракции содержатся в основном антитела - белки, синтезируемые в лимфоидной ткани и в клетках РЭС, а также некоторые компоненты системы комплемента. Функция антител - защита организма от чужеродных агентов (бактерии, вирусы, чужеродные белки), которые называются антигенами. Главные классы антител в крови: иммуноглобулины G (IgG); иммуноглобулины M (IgM); иммуноглобулины A (IgA), к которым относятся IgD и IgE. Только IgG и IgM способны активировать систему комплемента. С-реактивный белок также способен связывать и активировать С1-компонент комплемента, но эта активация непродуктивна и приводит к накоплению анафилотоксинов. Накопившиеся анафилотоксины вызывают аллергические реакции. В состав белковой части иммуноглобулина входят всего 4 полипептидные цепи: 2 одинаковые легкие и 2 одинаковые тяжелые цепи. Молекулярная масса легкой цепи составляет 23 кДа, а тяжелой - от 53 до 75 кДа. С помощью дисульфидных (-S-S-) связей (мостиков) тяжелые цепи соединены между собой и легкие цепи так Fab - фрагмент может связываться с соответствующим антигеном слабыми типами связей. Именно этот участок обеспечивает специфичность связи иммуноглобулина со своим антигеном. Выделяют также Fc-фрагмент - константная для всех иммуноглобулинов часть молекулы. Формируется за счет Н-цепей. Fc - фрагмент обеспечивает иногда прохождение иммуноглобулина через биологическую мембрану.

 

 

45. Катаболизм гемоглобина. Виды билирубина. Желтухи. Продолжительность жизни эритроцитов составляет 120 дней, затем они разрушаются и освобождается гемоглобин. Главными органами, в которых происходят разрушение эритроцитов и распад гемоглобина, являются печень, селезенка и костный мозг.Распад гемоглобина в печени начинается с разрыва α-метиновой связи между I и II кольцами порфиринового кольца. Этот процесс катализируется НАДФ-содержащей оксидазой и приводит к образованию зеленого пигмента вердоглобина. Дальнейший распад вердоглобина, происходит спонтанно с освобождением железа, белка-глобина и образованием одного из желчных пигментов – биливердина. Образовавшийся биливердин ферментативным путем восстанавливается в печени в билирубин, являющийся основным желчным пигментом.Образовавшийся во всех этих клетках билирубин поступает в печень, откуда вместе с желчью попадает в желчный пузырь. Билирубин, образовавшийся в клетках системы макрофагов, называется свободным, или непрямым, билирубином, поскольку вследствие плохой растворимости в воде он легко адсорбируется на белках плазмы крови и для его определения в крови необходимо предварительное осаждение белков спиртом. В крови взрослого здорового человека содержится относительно постоянное количество общего билирубина – от 4 до 26 мкмоль/л, в среднем 15 мкмоль/л. Около 75% этого количества приходится на долю непрямого билирубина. Повышение его концентрации в крови до 35 мкмоль/л приводит к желтухе. Непрямой билирубин, поступая с током крови в печень, подвергается обезвреживанию путем связывания с глюкуроновой кислотой.К билирубину присоединяются 2 остатка глюкуроновой кислоты с образованием сравнительно индифферентного комплекса – билирубин-диглюкуронида, В желчи всегда присутствует прямой билирубин. Сначала глюкуроновая кислота отщепляется от комплекса с билирубином и освободившийся билирубин подвергается восстановлению в стеркобилиноген, который выводится из кишечника.Последний легко окисляется под действием света и воздуха в стеркобилин. промежуточными продуктами восстановления являются последовательно мезобилирубин и мезобилиноген (уробилиноген). После всасывания небольшая часть мезобилиногена поступает через воротную вену в печень, где подвергается разрушению.Кроме того, очень небольшая часть стеркобилиногена после всасывания через систему геморроидальных вен попадает в большой круг кровообращения, минуя печень, и в таком виде выводится с мочой. В зависимости от вида нарушений метаболизма билирубина и причин гипербилирубинемии можно выделить три типа желтух.Надпечёночные желтухи — возникают в связи с усилением процесса образования билирубина. При этом повышается его непрямая (неконъюгированная) фракция. Печёночные желтухи. Печень захватывает непрямой билирубин, превращает (коньюгирует с глюкуроновой кислотой) его в прямой, а секретировать в желчь не может. И он поступает обратно в кровь. Поэтому при этом типе желтухи повышается прямой билирубин. Подпечёночные желтухи — возникают при нарушении оттока желчи по внепеченочным желчным протокам (обтурационная желтуха).

 

46. Белки соединительной ткани – коллаген, эластин, протеогликаны. Особенности структуры и функции. Роль витамина С в функционировании соединительной ткани. Межклеточный матрикс соединительной ткани характеризуется наличием волокнистых структур. Коллаген – наиболее распространенный белок (25-30% от всех белков человека). Более 80% всех белков он составляет в коже, костях, связках, сухожилиях, хрящах. Поэтому он долгое время считался белком соединительной ткани. Коллаген характеризуется особым АК составом: - 1/3 всех АК остатков приходится на глицин; - значительное количество пролина (до 10%); - встречается гидроксипролин и гидроксилизин. Большая часть представлена триадами –ГЛИ-Х-Y-, где Х – чаще пролин, а Y – чаще гидроксипролин. Эта регулярная последовательность представлена левозакрученной коллагеновой спиралью, более вытянутой, чем a-спираль. Каждая из спиралей представляет собой полипептидную цепь. Несколько спиралей соединяются в одну суперспираль, удерживающуюся за счет водородных связей между субъединицами. Длинна суперспирали примерно 300 нМ. По АК составу выделяют 2 вида коллагеновых цепей:- a1;- a2. Синтез коллагена. Существуют 8 этапов биосинтеза коллагена: 5 внутриклеточных и 3 внеклеточных. 1-й этап Протекает на рибосомах, синтезируется молекула-предшественник: препроколлаген. 2-й этап С помощью сигнального пептида "пре" транспорт молекулы в канальцы эндоплазматической сети. Здесь отщепляется "пре" - образуется "проколлаген". 3-й этап Аминокислотные остатки лизина и пролина в составе молекулы коллагена подвергаются окислению под действием ферментов пролилгидроксилазы и лизилгидроксилазы (эти окислительные ферменты относятся к подподклассу монооксигеназ). При недостатке витамина "С" - аскорбиновой кислоты наблюдается цинга, - заболевание, вызванное синтезом дефектного коллагена с пониженной механической прочностью, что вызывает, в частности, разрыхление сосудистой стенки и другие неблагоприятные явления. 4-й этап Посттрасляционная модификация - гликозилирование проколлагена под действием фермента гликозил трансферазы. Этот фермент переносит глюкозу или галактозу на гидроксильные группы оксилизина. 5-й этап З аключительный внутриклеточный этап - идет формирование тройной спирали - тропоколлагена (растворимый коллаген). В составе про-последовательности - аминокислота цистеин, который образует дисульфидные связи между цепями. Идет процесс спирализации. 6-й этап Секретируется тропоколлаген во внеклеточную среду, где амино- и карбоксипротеиназы отщепляют (про-)-последовательность. 7-й этап Ковалентное "сшивание" молекулы тропоколлагена по принципу "конец-в-конец" с образованием нерастворимого коллагена. В этом процессе принимает участие фермент лизилоксидаза (флавометаллопротеин, содержит ФАД и Cu). Происходит окисление и дезаминирование радикала лизина с образованием альдегидной группы. Затем между двумя радикалами лизина возникает альдегидная связь. Только после многократного сшивания фибрилл коллаген приобретает свою уникальную прочность, становится нерастяжимым волокном. Лизилоксидаза является Cu-зависимым ферментом, поэтому при недостатке меди в организме происходит уменьшение прочности соединительной ткани из-за значительного повышения количества растворимого коллагена (тропоколлагена). 8-й этап Ассоциация молекул нерастворимого коллагена по принципу "бок-в-бок". Ассоциация фибрилл происходит таким образом, что каждая последующая цепочка сдвинута на 1/4 своей длины относительно предыдущей цепи. Эластин еще более гидрофобен, чем коллаген. В нем до 90 % гидрофобных аминокислот. Много лизина, есть участки со строго определенной последовательностью расположения аминокислот. Цепи укладываются в пространстве в виде глобул. Глобула из одной полипептидной цепи называется -эластин. За счет остатков лизина происходит взаимодействие между молекулами -эластина. В образовании этой структуры принимают участие радикалы аминокислоты лизина. Это структура десмозина. Десмозин - это структура пиридина, которая образуется при взаимодействии лизина 4-х молекул -эластина. Витамин С – участвует в синтезе коллагена путем содействия специальным ферментами.

 

47. Мышечная ткань. Строение саркомера. Белки мышц – актин, миозин. Механизм мышечного сокращения. Источники энергии для мышечного сокращения. Мышечная ткань составляет 40 % от веса тела человека. Биохимические процессы, протекающие в мышцах, оказывают большое влияние на весь организм человека. Функция мышц - и постоянной температуре. Ни один искусственный механизм к этому не способен. Механическое движение, в котором химическая энергия превращается в механическую при постоянном давлении. Поперечно-полосатая мускулатура. Функциональная единица - саркомер. Толстая нить. Состоит из молекул белка миозина. Миозин - крупный олигомерный белок, молекулярная масса 500 кДа, состоит из 6 субъединиц, попарно одинаковых. Тяжелая цепь: на С-конце - -спираль, на N-конце - глобула. При соединении двух тяжелых цепей С-концевыми участками образуется суперспираль. Две легкие цепи входят в состав глобулы (головки). Стержневой участок суперспирали имеет 2 отдела, где спирали оголены - эти места открыты для действия протеолитических ферментов и имеют повышенную подвижность. Миозин. Отличается большим содержанием глутаминовой кислоты. Имеет отрицательный заряд. Он связывает ионы Са++ и Mg++. В присутствии Са++ миозин обладает активностью АТФ-азы. В присутствии Mg++ миозин связывает АТФ и АДФ. Способен взаимодействовать с актином. Молекула миозина длинная – 160 нм и тонкая (ширина её – 2 нм), представляет собой две полипептидные цепи. Есть т.н. головки миозина. Актин Имеет три формы. - мономерная форма: G–актин (глобулярная структура, глобулы полярные), связывается с АТФ; - димерная; - полимерная. Мономеры могут соединяться в присутствии АТФ в димеры (G+G+АТФ®G-АТФ-G+ Фн), из димеров могут образовываться полимеры: F–актин (от «фибрилла»). Молекула миозина обладает ферментативной активностью (АТФ-азная активность: АТФ + Н2О-->АДФ + Ф). Активные центры расположены на головках миозина. Тонкие нити. В состав тонких нитей входят три белка: сократительный белок актин; регуляторный белок тропомиозин; регуляторный белок тропонин. Актин - небольшой глобулярный белок, его молекулярная масса - 42 кDа. G-актин представляет собой глобулу. В физиологических условиях его молекулы способны к спонтанной агрегации, образуя F-актин. В состав тонкой нити входят две F-актиновые нити, образуется суперспираль (2 перекрученные нити). В области Z-линий актин прикрепляется к a-актинину. Механизм мышечного сокращения. Сродство комплекса "миозин-АТФ" к актину очень низкое. Сродство комплекса "миозин-АДФ" к актину очень высокое. Актин ускоряет отщепление АДФ и Ф от миозина и при этом происходит конформационная перестройка - поворот головки миозина. 1-я стадия Фиксация АТФ на головке миозина. 2-я стадия Гидролиз АТФ. Продукты гидролиза (АДФ и Ф) остаются фиксированными, а выделившаяся энергия аккумулируется в головке. Мышца готова к сокращению. 3-я стадия Образование комплекса "актин-миозин". Он очень прочен. Может быть разрушен только при сорбции новой молекулы АТФ. 4-я стадия Конформационные изменения молекулы миозина, в результате которых происходит поворот головки миозина. Освобождение продуктов реакции (АДФ и Ф) из активного центра головки миозина. Источники энергии следующие. 1.Специальные реакции субстратного фосфорилирования. Креатинфосфокиназная реакция.Это самый быстрый способ ресинтеза АТФ. Запасов креатинфосфата хватает для обеспечения мышечной работы в течение 20 с.Не требует присутствия кислорода, не дает побочных нежелательных продуктов, включается мгновенно. Его недостаток - малый резерв субстрата (хватает только на 20 с работы). Обратная реакция может протекать в митохондриях с использованием АТФ, образовавшейся в процессе окислительного фосфорилирования. Миокиназная реакция. Протекает только в мышечной ткани!АДФ --------> АТФ + АМФ.Реакция катализируется аденилаткиназой.Главное значение этой реакции заключается в образовании АМФ - мощного аллостерического активатора ключевых ферментов гликолиза, гликогенолиз. 2.Гликолиз, гликогенолиз. Не требуют присутствия кислорода (анаэробные процессы). Обладают большим резервом субстратов. Используется гликоген мышц (2 % от веса мышцы) и глюкоза крови, полученная из гликогена печени. 3 АТФ на один глюкозный остаток гликогена.Накопление недоокисленных продуктов (лактат).Гликолиз начинается не сразу - только через 10-15 с после начала мышечной работы. 3.Окислительное фосфорилирование. синтезируется 38 молекул АТФ при окислении одной молекулы глюкозы.Имеет самый большой резерв субстратов: может использоваться глюкоза, гликоген, глицерин, кетоновые тела.Продукты распада (CO2 и H2O) практически безвредные.Недостаток: требует повышенных количеств кислорода.

 



Поделиться:


Последнее изменение этой страницы: 2016-08-14; просмотров: 215; Нарушение авторского права страницы; Мы поможем в написании вашей работы!

infopedia.su Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Обратная связь - 18.219.22.169 (0.101 с.)