Заглавная страница Избранные статьи Случайная статья Познавательные статьи Новые добавления Обратная связь FAQ Написать работу КАТЕГОРИИ: ТОП 10 на сайте Приготовление дезинфицирующих растворов различной концентрацииТехника нижней прямой подачи мяча. Франко-прусская война (причины и последствия) Организация работы процедурного кабинета Смысловое и механическое запоминание, их место и роль в усвоении знаний Коммуникативные барьеры и пути их преодоления Обработка изделий медицинского назначения многократного применения Образцы текста публицистического стиля Четыре типа изменения баланса Задачи с ответами для Всероссийской олимпиады по праву
Мы поможем в написании ваших работ! ЗНАЕТЕ ЛИ ВЫ?
Влияние общества на человека
Приготовление дезинфицирующих растворов различной концентрации Практические работы по географии для 6 класса Организация работы процедурного кабинета Изменения в неживой природе осенью Уборка процедурного кабинета Сольфеджио. Все правила по сольфеджио Балочные системы. Определение реакций опор и моментов защемления |
Определители второго и третьего порядковСодержание книги
Похожие статьи вашей тематики
Поиск на нашем сайте Одним из источников появления определителей 2-го и 3-го порядков являются системы двух и трёх линейных уравнений с двумя и соответственно тремя переменными. Пусть дана система Если обе части первого уравнения умножить на Для матрицы Определение 2. Определителем 2-го порядка (определителем матрицы Определитель матрицы Обозначим D = Пусть дана система трёх уравнений с тремя неизвестными:
Умножим первое уравнение на = Пусть дана матрица А = Определение 3. Определителем матрицы А (определителем третьего порядка) называется число, равное D = Равенство (4) называется разложением определителя по элементам первого столбца. Итак, вычисление определителя третьего порядка сводится к вычислению определителей второго порядка. Если вычислить определители второго порядка, входящие в формулу (4), то получим, что Используя последнюю формулу непосредственным вычислением можно получить: 1. Определитель не изменится, если в нём строки и столбцы поменять местами (эту операцию называют транспонированием определителя). Следовательно в определителе строки и столбцы равноправны.. 2. D = Итак, определитель можно разлагать по любому столбцу. Можно заметить, что знак перед множителем 3. Если в определителе одна из строк (или столбцов) целиком состоит из нулей, то определитель равен нулю. 4. Системы (3) имеет единственное решение тогда и только тогда, когда D ¹ 0. Это решение можно найти по формулам: х = где D1, D2, D3 получаются из определителя D заменой первого, второго, третьего столбца соответственно столбцом свободных членов. Формулы (6) тоже называются формулами Крамера. Перестановки и подстановки Мы получили два эквивалентных определения определителя третьего порядка (формулы (4) и (5)). С помощью (4) определитель 3-го порядка вводится с помощью определителей второго порядка (разложение по столбцу). При этом легко проверяется, что все столбцы равноправны. Аналогично рекуррентным образом можно определить определитель n-го порядка (определитель квадратной матрицы n-го порядка), т.е.
= Но в этом случае уже не так просто, как для определителя третьего порядка, проверить, что разложения по остальным столбцам или строкам дают тот же самый результат. Поэтому чаще всего используют в качестве исходного другой подход к определению определителя n-го порядка. Но при этом используются в качестве вспомогательного материала перестановки и подстановки. Пусть дан упорядоченный набор из n элементов. Элементы этого набора занумеруем числами 1, 2, 3, …, n. Очевидно, вместо того, чтобы говорить об элементах, можно говорить об их номерах. Определение 4. Перестановкой из n чисел (или n символов) называется расположение этих чисел (или символов) в любом определённом порядке (без повторений). Теорема 1. Число перестановок из n символов равно n! Доказательство. Составляя перестановку, в качестве первого её элемента можно выбрать точно n символов. Если первый элемент выбран, то в качестве второго элемента можно выбрать любой из оставшихся (n – 1) символов. Следовательно, первые два места можно заполнить n×(n – 1) способами. Если два места в перестановке уже заполнены, то на третье место можно поставить любой из оставшихся (n – 2) символов. Следовательно, первые три места можно заполнить n×(n – 1)×(n – 2) способами. Продолжая этот процесс, получим, что все n мест в перестановке можно заполнить n×(n – 1)×(n – 2)×…×3×2×1 = n! способами. Говорят, что числа к и р образуют в перестановке (… к…р…) инверсию, если к > р, но в перестановке к стоит раньше р. Перестановка называется чётной, если она содержит чётное число инверсий. Перестановка называется нечётной, если она содержит нечётное число инверсий. Пример. 1) Перестановка (9, 7, 1, 3, 4, 8, 5, 2, 6) чётная. В ней число 9 образует инверсии со всеми стоящими за ней числами, их 8. Число 7 образует новые инверсии со всеми стоящими за ней числами, кроме числа 8, их 6. Число 1 не образует ни одной новой инверсии. Числа 3 и 4 образуют по одной новой инверсии с числом 2. Число 8 образует ещё инверсии с 5, 2 и 6, их 3. Число 5 образует инверсию с числом 2. Итак, получается 8 + 6 + 1 + 1 + 3 + 1 = 20 инверсий. 2) Перестановка (2, 1, 3, 5, 4, 6, 9, 8, 7) нечётная. В ней инверсии образуют пары чисел 2 и 1, 5 и 4, 9 и 8, 9 и 7, 8 и 7. Получилось 5 инверсий. Если в перестановке два символа поменять местами, а все остальные символы оставить на старых местах, то получим новую перестановку. Это преобразование перестановки называется транспозицией. Теорема 2. Всякая транспозиция меняет чётность перестановки. Доказательство. Пусть в перестановке символы к и р меняются местами. При этом возможны два случая. 1) Символы к и р в данной перестановке стоят рядом, т.е. (… к, р …). После транспозиции получится перестановка (…. р, к …). Если к и р составляли инверсию в данной перестановке, то после инверсии они уже не будут составлять инверсию и наоборот. Число инверсий, которые к и р составляли в данной перестановке с остальными символами, не изменится. Следовательно, число инверсий изменится на 1, т.е. чётность перестановки изменится. 2) Символы к и р в данной перестановке стоят не рядом, т.е. (…. к,…,р…). После транспозиции получится перестановка (… р,…,к…). Число инверсий, которые к и р составляли в данной перестановке с символами, стоящими перед к и после р, не изменится. Если между к и р стоят m символов, то переставить к и р можно следующим образом: переставить к последовательно с каждым из этих m символов, затем переставить к и р, затем в обратном порядке переставить р с каждым из этих m символов. Получим 2m + 1 транспозиций соседних символов. По доказанному каждая из них меняет чётность перестановки. Итак, чётность перестановки изменилась. Следствие. При n > 1 число чётных перестановок равно числе нечётных перестановок и равно 0,5×n!. Определение 5. Подстановкой из n символов (или подстановкой n-ой степени) называется любое взаимнооднозначное отображение множества этих символов на себя. Элементы данного множества будем обозначать 1, 2, …, n. Подстановка А может быть записана так: если число к переходит в число a к, то А = А = Запись подстановки А = Подстановка Е = Произведением двух подстановок одного и того же порядка называется результат последовательного выполнения тех отображений, которые задают эти подстановки. Например, если А = Аналогично получаем, что В×А =
Определители n-го порядка Пусть А = Определение 6. Определителем матрицы А (определителем n-го порядка) называется алгебраическая сумма n! слагаемых, каждое из которых есть произведение n элементов матрицы, взятых по одному из каждой строки и каждого столбца. При этом произведение берётся со знаком «+», если подстановка из индексов входящих в него элементов чётная, и со знаком «-» в противном случае. Обозначение определителя: | А | = Например, при n = 6 произведение а21а13а62а34а46а55 является членом определителя, так как в него входит точно по одному элементу из каждой строки и из каждого столбца. Подстановка, составленная из его индексов будет Произведение а21а13а62а34а46а15 не является членом определителя, так как в него входят два элемента из первой строки. Свойства определителей. 10. При транспонировании определитель не меняется (напомним, что транспонирование матрицы и определителя означает перемену строк и столбцов местами). Действительно, если (-1)к 20. Если все элементы строки (или столбца) определителя равны нулю, то определитель равен нулю. Это следует из того, что по одному элементу указанной строки (или столбца) будет входить в каждый член определителя. 30. Если все элементы какой-нибудь строки определителя имеют общий множитель, то его можно вынести за знак определителя. Действительно, если все элементы к-ой строки имеют общий множитель l, то их можно записать в виде 40. Если две строки определителя поменять местами, то определитель сменит знак. Действительно, если (-1)к 50. Если две строки определителя пропорциональны, то определитель равен нулю. Действительно, пусть все элементы к-ой строки равны соответствующим элементам р-ой строки, умноженным на l, т.е. | А | = 60. Если в определителе все элементы к-ой строки есть суммы двух слагаемых, то определитель равен сумме двух определителей, в которых все строки, кроме к-ой, такие же как и в данном определителе. На месте элементов к-ой строки одного из них стоят первые слагаемые элементов к-ой строки данного определителя, а на месте элементов к-ой строки второго – вторые их слагаемые. Пусть элементы к-ой строки будут (-1)s Собрав все первые слагаемые, мы получим определитель, отличающийся от данного только к-ой строкой. На месте к-ой строки будут стоять 70. Если к одной строке определителя прибавить другую его строку, все элементы которой умножены на одно и то же число, то определитель не изменится. Это свойство является следствием двух предыдущих. Если в определителе | А | вычеркнуть к-ую строку и р-ый столбец, то останется определитель (n–1)-го порядка. Он называется минором, дополнительным для элемента 80. Дополнительный минор и алгебраическое дополнение не зависит от того, какой элемент стоит в к-ой строке и р-ом столбце определителя. Лемма 1 D = Доказательство. Если а11 = 0, то равенство (8) очевидно. Пусть а11 ¹ 0. Так как в каждый член определителя входит точно один элемент из первой строки, то ненулевыми членами определителя могут быть только те, в которые входит а11. Все они имеют вид Лемма 2. D = Доказательство. В определителе D переставим р-ую строку последовательно с каждой предыдущей. При этом р-ая строка займёт место первой строки, но минор, дополнительный к элементу арк не изменится. Всего будет сделано (р – 1) перестановка строк. Если новый определитель обозначить D1, то D = (-1)р-1×D. В определителе D1 переставим к -ый столбец последовательно с каждым предыдущим столбцом, при этом будет сделано (к – 1) перестановка столбцов и минор, дополнительный к арк, не изменится. Получится определитель D2 = Теорема 3. Определитель равен сумме произведений элементов некоторой строки на их алгебраические дополнения, т.е. D = ак1Ак1 + ак2×Ак2 +…+аkn×Аkn (10). Доказательство. Пусть D = Теорема 4. Сумма произведений элементов одной строкиопределителя на алгебраические дополнения соответствующих элементов другой строки равна нулю. Доказательство. Пусть D = D = Замечание. Теоремы 3 и 4 будут верны, если в их формулировках слово «строка» заменить на слово «столбец». Способ вычисления определителя n-го порядка. Для вычисления определителя n -го порядка достаточно в какой-нибудь строке (или столбце) получить как можно больше нулей, используя свойство 70, а потом использовать теорему 3. При этом вычисление определителя n-го порядка сведётся к вычислению определителя (n – 1)-го порядка. Пример. Вычислите определитель D = Решение. Получим нули во второй строке. Для этого второй столбец 1) умножим на (-2) и прибавим к первому столбцу; 2) прибавим к третьему столбцу; 3) умножим на (-4) и прибавим к четвёртому столбцу. Получим, что D = D = Некоторые определители (например, такие, в которых стоят «большие» миноры, целиком состоящие из нулей) удобно разлагать по нескольким строкам. Это позволяет делать теорема Лапласа. Пусть в определителе D выделен минор М s-го порядка, элементы которого стоят на строках с номерами к1,к2,…,кs и на столбцах с номерами р1,р2,…,рs. Вычеркнем строки и столбцы с указанными номерами. После этого останется определитель (n – s)-го порядка. Его называют минором М1, дополнительным к минору М. Если s = к1+…+ кs + р1+…+рs, то алгебраическим дополнением к минору М называется А = ( -1)s× М1. Теорема 5 (теорема Лапласа). Пусть в определителе n -го порядка выделены к строк (или столбцов). Определитель равен сумме произведений всех миноров, стоящих на выделенных строках, на их алгебраические дополнения. Доказательство этой теоремы опустим. Пример. Теорема 6 (теорема Крамера). Если в системе линейных уравнений число неизвестных равно числу уравнений и определитель D системы отличен от нуля, то система имеет решение и только одно. Это решение получается по формулам Доказательство. Пусть дана система Используя теоремы 3 и 4, получим х1 ×0 + … + хк ×D + … + хn ×0 = D к, где D к =
III. МАТРИЦЫ
|
||
|
Последнее изменение этой страницы: 2016-08-16; просмотров: 925; Нарушение авторского права страницы; Мы поможем в написании вашей работы! infopedia.su Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Обратная связь - 216.73.216.96 (0.01 с.) |