Мы поможем в написании ваших работ!



ЗНАЕТЕ ЛИ ВЫ?

Влияние катализатора на скорость химических реакций

Поиск

 

Вещества, которые участвуют в реакциях и увеличивают ее скорость, оставаясь к концу реакции неизменными, называются катализаторами.

Явление изменения скорости реакции под действием таких веществ называется катализом. Реакции, протекающие под действием катализаторов, называются каталитическими.

В большинстве случаев действие катализатора объясняется тем, что он снижает энергию активации реакции. В присутствии ката­лизатора реакция проходит через другие промежуточные стадии, чем без него, причем эти стадии энергетически более доступны. Иначе говоря, в присутствии катализатора возникают другие активированные комплексы, причем для их образования требуется меньше энергии, чем для образования активированных комплексов, возникающих без катализатора. Таким образом, энергия активации резко понижается: некоторые молекулы, энергия которых была недостаточна для активных столкновений, теперь оказываются активными.

Для ряда реакций промежуточные соединения изучены; как правило, они представляют собою весьма активные нестойкие продукты.

Механизм действия катализаторов связан с уменьшением энергии активации реакции за счет образования промежуточных соединений. Катализ можно представить следующим образом:

А + К = А*

А* + В = С + D + К,

где А* - промежуточное активированное соединение.

В химической промышленности катализаторы применяются весьма широко. Под влиянием катализаторов реакции могут уско­ряться в миллионы раз и более. В некоторых случаях под действием катализаторов могут возбуждаться такие реакции, которые без них в данных условиях практически не протекают.

Различают гомогенный и гетерогенный катализ.

В случае гомогенного катализа катализатор и реагирующие вещества образуют одну фазу (газ или раствор). В случае гетерогенного катализа катализатор находится в системе в виде самостоятельной фазы.

Примеры гомогенного катализа:

1) окисление SO2 + 1/2O2 = SO3 в присутствии NO; NO легко окисляется до NO2, а NO2 уже окисляет SO2;

2) разложение пероксида водорода в водном растворе на воду и кислород: ионы Сг2О2=7, WO2-4, МоО2-4, катализирующие разложение пероксида водорода, образуют с ним промежуточные соединения, которые далее распадаются с выделением кислорода.

Гомогенный катализ осуществляется через промежуточные реакции с катализатором, и в результате происходит замена одной реакции с высокой энергией активации несколькими, у которых энергии активации ниже, скорость их выше:

CO + 1/2O2 = CO2 (катализатор - пары воды).

Широкое применение в химической промышленности находит гетерогенный катализ. Большая часть продукции, вырабатываемой в настоящее время этой промышленностью, получается с помощью гетерогенного катализа. При гетерогенном катализе реакция протекает на поверхности катализатора. Отсюда следует, что активность катализатора зависит от величины и свойств его поверхности. Для того чтобы иметь большую («развитую») поверхность, катализатор должен обладать пористой структурой или находиться в сильно раздробленном (высокодисперсном) состоянии. При практическом применении катализатор обычно наносят на носитель, имеющий пористую структуру (пемза, асбест и др.).

Как и в случае гомогенного катализа, при гетерогенном катализе реакция протекает через активные промежуточные соединения. Но здесь эти соединения представляют собой поверхностные соединения катализатора с реагирующими веществами. Проходя через ряд стадий, в которых участвуют эти промежуточные соединения, реакция заканчивается образованием конечных продуктов, а катализатор в результате не расходуется.

Все каталитические гетерогенные реакции включают в себя стадии адсорбции и десорбции.

Каталитическое действие поверхности сводится к двум факторам: увеличению концентрации на границе раздела и активированию адсорбированных молекул.

Примеры гетерогенного катализа:

2H2O = 2H2O + O2 (катализатор – MnO2,);

Н2 + 1/2 О2 = Н2О (катализатор - платина).

Очень большую роль играет катализ в биологических системах. Большинство химических реакций, протекающих в пищеварительной системе, в крови и в клетках животных и человека, являются каталитическими.реакциями. Катализаторы, называемые в этом случае ферментами, представляют собою простые или слож­ные белки. Так, слюна содержит фермент птиалин, который катализирует превращение крахмала в сахар. Фермент, имеющийся в желудке, — пепсин — катализирует расщепление белков. В организме человека находится около 30 000 различных ферментов: каждый из них служит эффективным катализатором соответствующей реакции.

Селективность действия катализатора заключается в том, что продукты реакции могут быть разными в зависимости от того, каким катализатором мы пользуемся.

Резко замедлить протекание нежелательных химических процессов в ряде случаев можно, добавляя в реакционную среду ингибиторы (явление «отрицательного катализа»).

 

Химическое равновесие

 

Все химические реакции можно разбить на две группы: необра­тимые и обратимые реакции. Необратимые реакции протекают до конца — до полного израсходования одного из реагирующих веществ. Обратимые реакции протекают не до конца: при обратимой реакции ни одно из реагирующих веществ не расходуется полностью. Это различие связано с тем, что необратимая реакция может протекать только в одном направлении. Обратимая же реакция может протекать как в прямом, так и в обратном на­правлениях.

Рассмотрим два примера.

Пример 1. Взаимодействие между цинком и концентрированной азотной кислотой протекает согласно уравнению:

Zn + 4HNO3 = Zn(NO3)2 + 2NO2 + 2H2O.

При достаточном количестве азотной кислоты реакция закон­чится только тогда, когда весь цинк растворится. Кроме того, если попытаться провести эту реакцию в обратном направлении — пропускать диоксид азота через раствор нитрата цинка, то металлического цинка и азотной кислоты не получится — данная реакция не может протекать в обратном направлении. Таким образом, взаимодействие цинка с азотной кислотой — необратимая реакция.

Пример 2. Синтез аммиака протекает согласно уравнению:

N2+ 3H2 = 2NH3 .

Если смешать один моль азота с тремя молями водорода, создать в системе условия, благоприятствующие протеканию реакции, и по истечении достаточного времени произвести анализ газовой смеси, то результаты анализа покажут, что в системе будет присутствовать не только продукт реакции (аммиак), но и исходные вещества (азот и водород). Если теперь в те же условия в качестве исходного вещества поместить не азото-водородную смесь, а аммиак, то можно будет обнаружить, что часть аммиака разложится на азот и водород, причем конечное соотношение ме­жду количествами всех трех веществ будет такое же, как в том случае, когда исходили из смеси азота с водородом. Таким обра­зом, синтез аммиака — обратимая реакция.

В уравнениях обратимых реакций вместо знака равенства можно ставить стрелки; они символизируют протекание реакции как в прямом, так и обратном направлениях.

Обратимые реакции - химические реакции, протекающие одновременно в двух противоположных направлениях.

 

Рисунок 5 – Изменение скорости прямой и обратной

химических реакций

 

Химическое равновесие - состояние системы, в котором скорость прямой реакции ( 1) равна скорости обратной реакции ( 2). При химическом равновесии концентрации веществ остаются неизменными. Химическое равновесие имеет динамический характер: прямая и обратная реакции при равновесии не прекращаются.

Состояние химического равновесия количественно характеризуется константой равновесия, представляющей собой отношение констант прямой (k1) и обратной (k2) реакций.

Для реакции mA + nB → pC + dD константа равновесия равна:

 

K = k1 / k2 = ([C]p • [D]d) / ([A]m • [B]n). (1.24)

Константа равновесия зависит от температуры и природы реагирующих веществ и не зависит от присутствия катализаторов. Поскольку катализатор изменяет энергию активации и прямой, и обратной реакций на одну и ту же величину, то на отношение констант их скорости он не оказывает влияния. Поэтому катализатор не влияет на величину константы равновесия и, следовательно, не может ни увеличить, ни снизить выход реакции. Он может лишь ускорить или замедлить наступление равновесия.

Смысл этого уравнения можно выразить так:

для одной и той же температуры отношение произведений равновесных концентраций (в степенях их стехиометрических коэффициентов) веществ в правой и левой частях уравнения химической реакции представляет постоянную величину.

Не забывать, что

1) все это правильно только для равновесных концентраций;

2) записывая константу, надо помнить, что в числителе стоят равновесные концентрации конечных продуктов, а в знаменателе – начальных веществ.

Что такое К? Константа равновесия показывает глубину протекания процесса. Если К>>1, процесс сильно сдвинут в сторону получения продуктов реакции. Если К<<1, наоборот, процесс сильно сдвинут влево, и реакция практически не идет. К = 1 – равновесие установилось «на полдороге».

Следует различать истинное равновесие и мнимое или кажущееся, которое называют еще заторможенным равновесием или метастабильным состоянием (в колбе водород, кислород и вода – ничего не меняется годами, чтобы понять, что это не равновесие, поднесите спичку).

Условия истинного равновесия:

1) при сохранении внешних условий состояние системы не меняется во времени;

2) при изменении условий (введение дополнительных количеств реагирующих веществ, изменение давления или температуры) система приходит к новому состоянию равновесия;

3) к состоянию равновесия можно подойти с противоположных сторон.

Равновесное состояние системы H2 + I2 ó2HI может быть достигнуто, исходя из водорода и иода, а можно получить то же самое, взяв HI.

Для равновесий между газообразными веществами удобно пользоваться не молярными концентрациями, а парциальными давлениями. Константа равновесия, выраженная через молярные концентрации – Кс, а через парциальные давления – Кр. Связь между ними

Кс = Кр(RT)D, (1.25)

где D - разность числа молей исходных веществ и конечных

продуктов.

1.7.1 Способы смещения равновесия

Принцип Ле-Шателье: если на систему, находящуюся в равновесии, производится внешнее воздействие (изменяются концентрация, температура, давление), то оно благоприятствует протеканию той из двух противоположных реакций, которая ослабляет это воздействие

1) увеличение давления (для газов) смещает равновесие в сторону реакции, ведущей к уменьшению объема (т.е. к образованию меньшего числа молекул);

2) увеличение температуры смещает положение равновесия в сторону эндотермической реакции (т.е. в сторону реакции, протекающей с поглощением теплоты);

3) увеличение концентрации исходных веществ и удаление продуктов из сферы реакции смещает равновесие в сторону прямой реакции;

4) катализаторы не влияют на положение равновесия.

 

 



Поделиться:


Последнее изменение этой страницы: 2016-08-14; просмотров: 3042; Нарушение авторского права страницы; Мы поможем в написании вашей работы!

infopedia.su Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Обратная связь - 3.149.251.198 (0.009 с.)