Мы поможем в написании ваших работ!



ЗНАЕТЕ ЛИ ВЫ?

Матриці. Означення. Види матриць

Поиск

 

Означення 1. Матрицею розміру називається прямокутна таблиця, складена із чисел вигляду , розміщених в рядках і стовпцях, яка позначається

Скорочено пишуть . Зустрічаються також позначення

числа називаються елементами матриці.

Означення 2. Дві матриці А і В однакових розмірів називаються рівними тоді і тільки тоді, коли рівні їх відповідні елементи, . Позначається

Розглянемо основні види матриць.

Нульовою називається матриця розміру , всі елементи якої дорівнюють нулю.

Квадратною називається матриця, в якої кількість рядків дорівнює кількості стовпців . У цьому випадку говорять, що матриця має порядок (замість розміру ).

Діагональною називається така квадратна матриця, в якої елементи головної діагоналі відмінні від нуля, а всі решта елементів дорівнюють нулю, позначається

Діагональна матриця, в якої всі діагональні елементи дорівнюють одиниці, називається одиничною матрицею, і позначається

Матриця що складається з одного стовпця називається матрицею-стовпцем

.

Аналогічно, матриця-рядок складається з одного рядка

Звернемо увагу, що ряд факторів пов’язаних з поняттям матриці для багатьох так чи інакше могли бути відомими ще до знайомства з самим терміном.

Розглянемо приклади.

Приклад 1. Відомість на отримання стипендії для 20 студентів є прикладом матриці розміром 20х1, елементами якої є розмір стипендії кожному.

Приклад 2. У відомості на зарплату бригаді для 15 робітників можуть бути вказані суми: нарахована, утримана і до оплати. Дані цієї відомості теж представляють матрицю розміру 15х3.

Приклад 3. При виконанні робіт в шахті (метро, тунелі) по проходці можна виділити два основних види робіт: виїмка породи (сюди входить буріння шпурів, заряжання, зривання, прибирання породи) і кріплення. Обидва види робіт при сталій площі поперечного перетину можуть вимірюватись в погонних метрах. Припустимо, що протягом доби кожна із трьох змін добилися таких результатів:

 

Зміни Виїмка (в м) Кріплення (в м)
І-а зміна
ІІ-а зміна
ІІІ-я зміна

 

Ці результати можна записати у вигляді матриці розміром 3х2:

 

Лінійні дії над матрицями

 

Іноді в роботі з таблицями (матрицями) прикладів типу 1–3 із 1.8., доводиться виконувати над ними певні операції. Так, якщо в прикладі 1 потрібно підрахувати заплановий розмір стипендій за семестр (6 місяців), то очевидно необхідно кожний елемент цієї матриці помножити на 6. Виникає необхідність множити матрицю на число.

Якщо в умовах прикладу 2 ми маємо відомості 3-х місяців одного квартала, то можна скласти зведену відомість за квартал, додаючи розміщені у відповідних графах дані стосовно кожного робітника.

Приходимо до дії додавання матриць.


Якщо в умовах прикладу 3, 1.8. позначити через і – результати роботи 3-х змін за першу і другу добу відповідно, то можна знайти сумарні результати за дві доби додаванням відповідних елементів і позначити це

Отже з прикладів бачимо, що цілком природно виникає необхідність дій множення матриці на число і додавання матриць.

Означення 1. Добутком числа на матрицю розміру називається нова матриця того ж розміру, кожний елемент якої дорівнює відповідному елементу матриці помноженному на число , тобто

Матриця (–1) – протилежна матриці , і позначається .

Дія додавання вводиться тільки для матриць одного і того ж розміру.

Означення 2. Сумою двох матриць і розміру називається матриця того ж розміру, кожний елемент якої дорівнює сумі відповідних елементів матриць–доданків, тобто , і позначається .

Якщо ж , то різниця матриць.

Дії додавання, віднімання і множення матриць на число називаються лінійними діями над матрицями.

Можна перевірити, що вони мають такі властивості:

Тут позначено через 0 – нульову матрицю і — протилежну матриці .

Вправа. Перевірити властивості 1–8 для матриць

і чисел .

Приклад. Задані матриці

, .

Знайти 1) ; 2) .

Розв’язання. 1)

.

 

2) .


Множення матриць

 

Множення матриць розглянемо, починаючи з відомого вже прикладу 3, при підрахунку грошових затрат на виконання робіт по проходці в шахті (метро, тунелі). Нехай в рядках матриці

 

 

записані результати роботи за добу кожної із трьох змін: по виїмці породи (перший стовпець) і по кріпленню пройденої виробки (другий стовпець). Як вже згадувалось, при заданій площі поперечного перетину проходки результати робіт можуть вимірюватись в пройденних погонних метрах. Замовнику необхідно знати, яку суму грошей прийдеться виділяти на оплату праці робітників, а яку – на капітальні витрати. Існують норми розцінок на зарплату і капітальні витрати, які представимо у вигляді матриці розцінок

 

де перший стовпець – норми оплати праці робітників: за 1 погонний метр по виїмці породи і за 1 погонний метр по кріпленню відповідно. Другий стовпець: – відповідні капітальні затрати за 1 погонний метр виїмки і за 1 погонний метр кріплення.

Загальні затрати на зарплату для кожної із змін дорівнюють сумі добутків пройдених кількостей метрів по обох видах робіт на відповідні норми розцінок. Позначимо через сумму грошей зароблену -ю зміною . Аналогічно підраховуються капітальні затрати для -ої зміни по виїмці і кріпленню.

 

Отримаємо таблицю затрат


 

Зміни Затрати на зарплату по виїмці і кріпленню Капітальні затрати по виїмці і кріпленню
І-а зміна
ІІ-а зміна
ІІІ-я зміна

 

 

Ці дані запишемо у вигляді нової матриці затрат , що отримана з матриць і за допомогою операції, яку називають множенням матриць, і позначають

Для множення матриці розміру на матрицю розміру необхідна їх узгодженність, тобто, щоб число стовпців матриці (першого співмножника) збігалося з числом рядків матриці (другого співмножника). Так в наведеному прикладі матриця узгоджується з матрицею (для кожного виду робіт є норми розцінок). Однак матриця не є узгодженою з матрицею .

Означення 1. Добутком матриці розміру на матрицю розміру називається матриця розміру , елементи якої дорівнюють сумі добутків елементів -того рядка матриці на відповідні елементи -того стовпця матриці , тобто

.

Із структури елементів зрозуміло необхідність узгодженості матриць і : кожному елементу в -тому рядку матриці (першого співмножника) повинен відповідати елемент в -тому стовпці матриці (другого співмножника). Число рядків матриці дорівнює числу рядків першого співмножника, а число стовпців- числу стовпців другого співмножника.

Приклад 1. Знайти добуток матриць і , якщо , .

Розв’язання. Матриця має розмір 2х2, розмір матриці - 2х3. Число стовпців матриці дорівнює 2 і збігається з числом рядків матриці . Отже, матриці узгоджені, тому можна множити матрицю на матрицю . В результаті отримаємо матрицю розміром 2х3, тобто

.

Приклад 2. Переконатись, що для даних матриць

Звернути увагу, що в даному випадку .

Приклад 3. Переконатись, що для даних матриць

Звернути увагу, що добуток двох ненульових матриць може давати нульову матрицю, і, крім того, .

Означення 2. Матриці і називаються переставними або комутативними, якщо .

Приклад 4.

 

Легко перевірити, що довільна квадратна і одинична матриці комутативні, і при цьому .

Приклад 5. Перевірити останню рівність, якщо

Можна показати, що множення матриць має такі властивості:

де – число;

.

Тут мається на увазі, що всі записані добутки матриць існують.

Приклад 6. Перевірити властивості 1-4, якщо число , а матриці такі:

, , С= .

Розглянемо поняття степеня квадратної матриці.

Означення 3. Квадратом матриці (позначається ) називається добуток , тобто .

Аналогічно вводиться .

Приклад 7. Для матриць і , де

, ,

довести, що , та знайти значення виразів.

Означення 4. Якщо - заданий многочлен і деяка квадратна матриця, то вираз

де - одинична матриця, називається многочленною матрицею.

Приклад 8. Для матриці

Знайти

Обчислити степені квадратних матриць:

9. . 10 . 11. .

12. . 13. . 14. .

Перемножити прямокутні матриці:

15. . 16. .

17. .

Знайти , якщо задана матриця і функція

Відповіді.

8. . 9. .

10. . 11. . 12. .

13. . 14. . 15. .

16. . 17. .

 

 

Визначник добутку матриць

 

Визначник квадратної матриці позначають (скорочення від латинської назви детермінант), або | |. Наприклад, якщо

то .

Теорема. Визначник добутку двох квадратних матриць -го порядку дорівнює добуткові їх визначників, тобто

, або . (1)

Рівність перевіримо для матриць другого порядку.

 

Приклад. Перевірити рівність (1) для таких матриць

Розв’язання. Обчислимо спочатку визначники заданих матриць та добуток їх

 

; ,

.

 

Знайдемо тепер добуток матриць і і теж обчислимо їх визначник

 

. .

 

Отже, .

 

Приклади. Знайти визначники матриць:

1. . 2 . 3. .

4. . 5. . 6. .

Для поданих матриць знайти їх добуток та обчислити визначники. Результат перевірити за допомогою теореми.

Відповіді. 1. -1. 2. 343. 3. . 4. 1. 5. . 6. .

7. 6,-6,-36. 8. -6, -33, 198.

 

Обернена матриця.

Поняття оберненої матриці розглянемо на прикладі квадратної матриці третього порядку, яке по аналогії можна буде узагальнити для матриць довільного порядку. Нехай

.

Означення 1. Матриця називається неособливою (невиродженою), якщо її визначник відмінний від нуля, тобто .

Якщо ж , то матриця називається особливою (виродженою).

Означення 2. Квадратна матриця називається оберненою до матри ці , якщо виконується рівність

(1)

тобто добуток цих матриць дорівнює одиничній матриці .

Теорема. Якщо матриця - неособлива (), то ця умова є необхідною і достатньою для існування оберненої матриці .

Доведемо необхідність. Нехай матриця має обернену , тобто . За теоремою про визначник добутку двох матриць маємо

, бо . (2)

Тому рівність (2) можлива тільки тоді, коли і .

Достатність. Нехай визначник матриці відмінний від нуля, тобто . Скорочено позначимо . Покажемо, як знайти обернену матрицю.

Для кожного з елементів матриці знайдемо відповідні їм алгебраїчні доповнення : , розмістивши їх у вигляді нової матриці відповідно розташуванню елементів в . Отримаємо

(3)

(див., розв’язаний в 1.5 приклад, де отримано матрицю із алгебраїчних доповнень разом з перевіркою вірності їх значень). Протранспонуємо матрицю , замінивши рядки стовпцями, отримаємо формулу оберненої матриці

. (4)

За допомогою теорем про розклад та анулювання для визначників третього порядку неважко перевірити, що .

Приклад 1. Знайти обернену матрицю до матриці

.

Розв’язання здійснимо у такій послідовності

1) Обчислимо визначник матриці

.

Оскільки , то існує обернена матриця.

2)Знаходимо алгебраїчні доповнення елементів матриці

; ; ; ; ; ; ; .

3) Записуємо нову матрицю за формулою (3)

.

4) За формулою (4) отримуємо обернену матрицю

.

5) перевіримо, що ,

Приклад 2. Знайти матрицю, обернену до матриці

.

Розв’язання. 1) .

2) ; ;

; .

3) .

4) .

5)

.



Поделиться:


Последнее изменение этой страницы: 2016-07-14; просмотров: 1827; Нарушение авторского права страницы; Мы поможем в написании вашей работы!

infopedia.su Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Обратная связь - 18.118.164.100 (0.014 с.)