Заглавная страница Избранные статьи Случайная статья Познавательные статьи Новые добавления Обратная связь FAQ Написать работу КАТЕГОРИИ: АрхеологияБиология Генетика География Информатика История Логика Маркетинг Математика Менеджмент Механика Педагогика Религия Социология Технологии Физика Философия Финансы Химия Экология ТОП 10 на сайте Приготовление дезинфицирующих растворов различной концентрацииТехника нижней прямой подачи мяча. Франко-прусская война (причины и последствия) Организация работы процедурного кабинета Смысловое и механическое запоминание, их место и роль в усвоении знаний Коммуникативные барьеры и пути их преодоления Обработка изделий медицинского назначения многократного применения Образцы текста публицистического стиля Четыре типа изменения баланса Задачи с ответами для Всероссийской олимпиады по праву Мы поможем в написании ваших работ! ЗНАЕТЕ ЛИ ВЫ?
Влияние общества на человека
Приготовление дезинфицирующих растворов различной концентрации Практические работы по географии для 6 класса Организация работы процедурного кабинета Изменения в неживой природе осенью Уборка процедурного кабинета Сольфеджио. Все правила по сольфеджио Балочные системы. Определение реакций опор и моментов защемления |
Использование способов парной корреляции для изучения стохастических зависимостейСодержание книги
Поиск на нашем сайте
Формы стохастической связи. Приемы обоснования уравнения связи. Порядок расчета параметров уравнения прямой, параболы, гиперболы. Методика расчета коэффициентов корреляции при прямолинейной и криволинейной формах зависимости. Интерпретация результатов корреляционно-регрессионного анализа. Одной из основных задач корреляционного анализа является определение влияния факторов на величину результативного показателя (в абсолютном измерении). Для решения этой задачи подбирается соответствующий тип математического уравнения, которое наилучшим образом отражает характер изучаемой связи (прямолинейной, криволинейной и т.д.). Это играет важную роль в корреляционном анализе, потому что от правильного выбора уравнения регрессии зависит ход решения задачи и результаты расчетов. Обоснование уравнения связи делается с помощью сопоставления параллельных рядов, группировки данных и линейных графиков. Размещение точек на графике покажет, какая зависимость образовалась между изучаемыми показателями: прямолинейная или криволинейная. Наиболее простым уравнением, которое характеризует прямолинейную зависимость между двумя показателями, является уравнение прямой: Yx= a+ bx, (7.1) где х — факторный показатель; Y — результативный показатель; а и b — параметры уравнения регрессии, которые требуется отыскать. Это уравнение описывает такую связь между двумя признаками, при которой с изменением факторного показателя на определенную величину наблюдается равномерное возрастание или убывание значений результативного показателя. В качестве примера для иллюстрации корреляционного анализа прямолинейной зависимости могут быть использованы сведения об изменении урожайности зерновых культур (Y)в зависимости от качества пахотной земли (x) (см. табл. 4.7). Значения коэффициентов а и b находят из системы уравнений, полученных по способу наименьших квадратов. В данном случае система уравнений имеет следующий вид: (7.2) где п — количество наблюдений (в нашем примере — 20). Значения ∑x, ∑y, ∑xy, ∑x 2 рассчитываются на основе фактических исходных данных (табл. 7.1). Т а б л и ц а 7.1 Расчет производных величин для определения параметров уравнения связи и коэффициента корреляции
Подставив полученные значения в систему уравнений, получим Умножив все члены первого уравнения на 45 (900/20),получим следующую систему уравнений: Отнимем от второго уравнения первое. Отсюда 1000 b = 400; b = 0,4, a = = 7,0. Таким образом, уравнение связи, которое описывает зависимость урожайности от качества почвы, будет иметь вид Yx = 7,0 + 0,4 x. Коэффициент а — постоянная величина результативного показателя, которая не связана с изменением данного фактора. Параметр b показывает среднее изменение результативного показателя с повышением или понижением величины фактора на единицу его измерения. В данном примере с увеличением качества почвы на один балл урожайность зерновых культур повышается в среднем на 0,4 ц/га. Подставив в уравнение регрессии соответствующие значения х, можно определить выравненные (теоретические) значения результативного показателя (Y)для каждого хозяйства. Например, чтобы рассчитать урожайность зерновых культур для первого хозяйства, где качество почвы оценивается 32 баллами, необходимо это значение подставить в уравнение связи: Yx = 7 + 0,4 × 32 = 19,8 ц/га. Полученная величина показывает, какой была бы урожайность при качестве почвы 32 балла, если бы данное хозяйство использовало свои производственные возможности в такой степени, как в среднем все хозяйства района. Аналогичные расчеты сделаны для каждого хозяйства. Данные приведены в последней графе табл. 7.1. Сравнение фактического уровня урожайности с расчетным позволяет оценить результаты работы отдельных предприятий. По такому же принципу решается уравнение связи при криволинейной зависимости между изучаемыми явлениями. Если при увеличении одного показателя значения другого возрастают до определенного уровня, а потом начинают снижаться (например, зависимость производительности труда рабочих от их возраста), то для записи такой зависимости лучше всего подходит парабола второго порядка: Yx = a + bx + cx 2. (7.3) В соответствии с требованиями метода наименьших квадратов для определения параметров a, b и с необходимо решить следующую систему уравнений:
(7.4) Значения ∑x, ∑y, ∑xy, ∑x 2, ∑x 3, ∑x 4 находят основании исходных данных (табл. 7.2). Т а б л и ц а 7.2 Зависимость производительности труда (у) от возраста работников (х)
Подставив полученные значения в систему уравнений, получим Параметры а, b и с находят способом определителей или способом исключения. Используем способ определителей. Сначала найдем общий определитель: Δ = = = 9 × 159 × 3788 + 36 × 756 × 159 + 36 × 756 × 159 - 1593 - 362 × 3788 - 7562 × × 9 = 2565; затем частные определители ∆ а, ∆ b и ∆ с: ∆ а = = –6846; ∆ b = = 11379; ∆ c = = –1440. Отсюда а = = –2,67; b = = 4,424; c = = –0,561.
Уравнение параболы будет иметь следующий вид: Yх = -2,67 + 4,424 х - 0,56 x 2. Параметры полученного уравнения экономического смысла не имеют. Если подставить в данное уравнение соответствующие значения х, то получим выравненные значения производительности труда в зависимости от возраста рабочих. Результаты приведены в последней графе табл. 7.2. Из таблицы видно, что производительность труда рабочих повышается до 40-летнего возраста, после чего начинает снижаться. Значит, те предприятия, которые имеют больше работников 30-40-летнего возраста, будут иметь и более высокие показатели производительности труда при прочих равных условиях. Этот фактор необходимо учитывать при планировании уровня производительности труда и при подсчете резервов ее роста. Довольно часто в экономическом анализе для записи криволинейных зависимостей используется гипербола Yх = a + . (7.5) Для определения ее параметров необходимо решить следующую систему уравнений: (7.6) Гипербола описывает такую зависимость между двумя показателями, когда при увеличении одной переменной значения другой увеличиваются до определенного уровня, а потом прирост снижается, например, зависимость урожайности от количества внесенного удобрения, продуктивности животных от уровня их кормления, себестоимости продукции от объема производства и т.д. При более сложном характере зависимости между изучаемыми явлениями используются более сложные параболы (третьего, четвертого порядка и т.д.), а также квадратические, степенные, показательные и другие функции. Таким образом, используя тот или иной тип математического уравнения, можно определить степень зависимости между изучаемыми явлениями, т.е. узнать, на сколько единиц в абсолютном измерении изменяется величина результативного показателя с изменением факторного на единицу. Однако регрессионный анализ не дает ответа на вопрос: тесная это связь или нет, решающее воздействие оказывает данный фактор на величину результативного показателя или второстепенное? Для измерения тесноты связи между факторными и результативными показателями определяется коэффициент корреляции. В случае прямолинейной формы связи между изучаемыми показателями коэффициент корреляции рассчитывается по следующей формуле:
r = или (7.7) r = . (7.8)
Подставляя значения ∑x, ∑y, ∑xy, ∑x 2 и ∑у 2 в формулу (7.7), получаем r = = 0,66.
Коэффициент корреляции может принимать значения от 0 до ±1. Чем ближе его величина к 1, тем более тесная связь между изучаемыми явлениями, и наоборот. В данном случае величина коэффициента корреляции является существенной (r = 0,66). Это позволяет сделать вывод о том, что плодородие почвы — один из основных факторов, от которого в данном районе зависит уровень урожайности зерновых культур. Если коэффициент корреляции возвести в квадрат, получим коэффициент детерминации (d = 0,435). Он показывает, что урожайность зерновых культур на 43,5% зависит от качества почвы, а на долю других факторов приходится 56,5% ее прироста. Что касается измерения тесноты связи при криволинейной форме зависимости, то здесь используется не линейный коэффициент корреляции, а корреляционное отношение: η = , (7.9) где = ; =
Показатель (7.9) является универсальным. Его можно применять при любой форме зависимости. Однако для определения его величины вначале необходимо решить уравнение регрессии и рассчитать выравненные значения результативного показателя (у), для чего в полученное уравнение нужно подставить значения х и х 2по каждой возрастной группе (табл. 7.3). Т а б л и ц а 7.3 Расчет исходных данных для определения корреляционного отношения при криволинейных зависимостях
Подставив полученные значения в формулу (7.9),. определим величину корреляционного отношения: η = = = 0,956. В заключение необходимо отметить, что мы рассмотрели использование способов парной корреляции только на двух примерах. Однако эта методика может быть использована для исследования соотношений между разными экономическими показателями, что позволяет значительно углубить знания об изучаемых явлениях, определить место и роль каждого фактора в изменении уровня исследуемого показателя.
|
||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Последнее изменение этой страницы: 2016-07-11; просмотров: 281; Нарушение авторского права страницы; Мы поможем в написании вашей работы! infopedia.su Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Обратная связь - 3.144.117.164 (0.008 с.) |