Заглавная страница Избранные статьи Случайная статья Познавательные статьи Новые добавления Обратная связь FAQ Написать работу КАТЕГОРИИ: АрхеологияБиология Генетика География Информатика История Логика Маркетинг Математика Менеджмент Механика Педагогика Религия Социология Технологии Физика Философия Финансы Химия Экология ТОП 10 на сайте Приготовление дезинфицирующих растворов различной концентрацииТехника нижней прямой подачи мяча. Франко-прусская война (причины и последствия) Организация работы процедурного кабинета Смысловое и механическое запоминание, их место и роль в усвоении знаний Коммуникативные барьеры и пути их преодоления Обработка изделий медицинского назначения многократного применения Образцы текста публицистического стиля Четыре типа изменения баланса Задачи с ответами для Всероссийской олимпиады по праву Мы поможем в написании ваших работ! ЗНАЕТЕ ЛИ ВЫ?
Влияние общества на человека
Приготовление дезинфицирующих растворов различной концентрации Практические работы по географии для 6 класса Организация работы процедурного кабинета Изменения в неживой природе осенью Уборка процедурного кабинета Сольфеджио. Все правила по сольфеджио Балочные системы. Определение реакций опор и моментов защемления |
Методика оценки и практического применения результатов корреляционного анализаСодержание книги
Поиск на нашем сайте
Необходимость оценки уравнения связи. Показатели, которые применяются для оценки уравнения связи. Методика их расчета и интерпретация. Использование уравнения связи для оценки деятельности предприятия, определения влияния факторов на прирост результативного показателя подсчета резервов и планирования его уровня. Для того чтобы убедиться в надежности уравнения связи и правомерности его использования для практической цели, необходимо дать статистическую оценку надежности показателей связи. Для этого используются критерий Фишера (F -отношение), средняя ошибка аппроксимации коэффициенты множественной корреляции (R)и детерминации (D). Критерий Фишера рассчитывается следующим образом: F = , = ; = ; (7.22) где . — индивидуальные значения результативного показателя, рассчитанные по уравнению; ух — среднее значение результативного показателя, рассчитанное по уравнению; — фактическиеиндивидуальные значения результативного показателя; т — количество параметров в уравнении связи, учитывая свободный член уравнения; п — количество наблюдений (объем выборки).
Фактическая величина F -отношения сопоставляется с табличной и делается заключение о надежности связи. В нашем примере величина F -отношения на пятом шаге равна 95,67. F -теоретическое рассчитано по таблице значений F. При уровне вероятности Р = 0,05 и количестве степеней свободы [(т - 1) = (6 – 1) = 5, (n – т) = 40 – 6 = 34] оно будет составлять 2,49. Поскольку Fфакт > Fтабл , то гипотеза об отсутствии связи между рентабельностью и исследуемыми факторами отклоняется. Для статистической оценки точности уравнения связи используется также средняя ошибка аппроксимации: = . (7.23) Чем меньше теоретическая линия регрессии (рассчитанная по уравнению) отклоняется от фактической (эмпиричной), тем меньше средняя ошибка аппроксимации. В нашем примере она составляет 0,0364, или 3,64%. Учитывая, что в экономических расчетах допускается погрешность 5-8 %, можно сделатьвывод, что исследуемое уравнение связи довольно точно описывает изучаемые зависимости. С такой же небольшой погрешностью будет делаться и прогноз уровня рентабельности по данному уравнению. О полноте связи можно судить также по величине множественных коэффициентов корреляции и детерминации. В нашем примере на последнем шаге R = 0,92, a D = 0,85. Это значит, что вариация рентабельности на 85% зависит от изменения исследуемых факторов, а на долю других факторов приходится 15% вариации результативного показателя. Значит в корреляционную модель рентабельности удалось включить наиболее существенные факторы. Следовательно, данное уравнение можно использовать для практических целей: а) оценки результатов хозяйственной деятельности; б) расчета влияния факторов на прирост результативного показателя; в) подсчета резервов повышения уровня исследуемого показателя; г) планирования и прогнозирования его величины. Оценка деятельности предприятия по использованию имеющихся возможностей проводится сравнением фактической величины результативного показателя с теоретической (расчетной), которая определяется на основе уравнения множественной регрессии. В нашем примере (см.табл. 7.5) на предприятии №1 материалоотдача (х 1) составляет 2,4 руб., фондоотдача (х 2) — 80 коп., производительность труда (х 3) — 8 тыс. руб., продолжительность оборота оборотных средств (х 4)— 25 дней, удельный вес продукции высшей категории качества (х5) — 25%. Отсюда расчетная величина рентабельности составит: Yх = 0,49 + 3,65 × 2,4 × 0,09 × 80 + 1,02×8 - 0,122 × 25 +0,052 × 25 = 22,86%. Она превышает фактическую на 0,36%. Это говорит о том, что данное предприятие использует свои возможности несколько хуже, чем в среднем все исследуемые предприятия. Влияние каждого фактора на прирост (отклонение от плана) результативного показателя рассчитывается следующим образом: . (7.24) В связи с тем что план был недовыполнен по всем факторным показателям (табл. 7.11), уровень рентабельности понизился на 2,095%. Т а б л и ц а 7.11 Расчет влияния факторов на прирост уровня рентабельности
Подсчет резервов повышения уровня рентабельности проводится аналогичным способом: резерв прироста каждого факторного показателя умножается на величину соответствующего коэффициента регрессии: Если предприятие достигнет запланированного уровня факторных показателей (табл. 7.12), то рентабельность повысится на 3,08%, в том числе за счет роста материалоотдачи на 1,09%,"фондоотдачи — на 0,45% и т.д. Так определяют резервы при условии прямолинейной зависимости, когда она отражается уравнением прямой. При криволинейных зависимостях между исследуемыми показателями, которые описываются уравнением параболы, гиперболы и другими функциями, для определения величины резерва роста (снижения) результативного показателя необходимо в полученное уравнение связи подставить сначала фактический уровень факторного показателя, а затем возможный (прогнозный) и сравнить полученные результаты. Например, нужно определить резерв увеличения среднечасовой выработки рабочих, если их средний возраст снизится с 45 до 40 лет. Используя уравнение параболы (см. с. 131), сначала рассчитаем среднюю выработку фактическую: Yф = –2,67 + 4,424 × 4,5 – 0,561 × 4,52 = 5,87 тыс. руб., а затем прогнозируемую: Yn = –2,67 + 4,424 × 4,0 – 0,561 × 4,02 = 6,05 тыс. руб., Сопоставив полученные величины, узнаем резерв роста среднечасовой выработки: Р ↑ Y = Yп – Yф = 6,05 – 5,87 = + 0,18 тыс. руб. Результаты многофакторного регрессионного анализа могут быть также использованы для планирования и прогнозирования уровня результативного показателя. С этой целью необходимо в полученное уравнение связи подставить прогнозный уровень факторных показателей (табл. 7.12). Yпл = 0,49 + 3,65 × 2,7 + 0,09 × 85 + 1,02 × 8,5 – 0,122 × 20 + 0,052 × 33 = 25,95 % Т а б л и ц а 7.12 Подсчет резервов повышения уровня рентабельности
Таким образом, многофакторный корреляционный анализ имеет важную научную и практическую значимость. Он позволяет изучить закономерности изменения результативного показателя в зависимости от поведения разных факторов, определить их влияние на величину результативного показателя, установить, какие из них являются основными, а какие второстепенными. Этим достигается более объективная оценка деятельности предприятия, более точное и полное определение внутрихозяйственных резервов и прогнозного уровня показателей.
|
||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Последнее изменение этой страницы: 2016-07-11; просмотров: 392; Нарушение авторского права страницы; Мы поможем в написании вашей работы! infopedia.su Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Обратная связь - 3.149.214.28 (0.007 с.) |