Заглавная страница Избранные статьи Случайная статья Познавательные статьи Новые добавления Обратная связь FAQ Написать работу КАТЕГОРИИ: АрхеологияБиология Генетика География Информатика История Логика Маркетинг Математика Менеджмент Механика Педагогика Религия Социология Технологии Физика Философия Финансы Химия Экология ТОП 10 на сайте Приготовление дезинфицирующих растворов различной концентрацииТехника нижней прямой подачи мяча. Франко-прусская война (причины и последствия) Организация работы процедурного кабинета Смысловое и механическое запоминание, их место и роль в усвоении знаний Коммуникативные барьеры и пути их преодоления Обработка изделий медицинского назначения многократного применения Образцы текста публицистического стиля Четыре типа изменения баланса Задачи с ответами для Всероссийской олимпиады по праву Мы поможем в написании ваших работ! ЗНАЕТЕ ЛИ ВЫ?
Влияние общества на человека
Приготовление дезинфицирующих растворов различной концентрации Практические работы по географии для 6 класса Организация работы процедурного кабинета Изменения в неживой природе осенью Уборка процедурного кабинета Сольфеджио. Все правила по сольфеджио Балочные системы. Определение реакций опор и моментов защемления |
Принятие решений в условиях неопределенности критерия.↑ Стр 1 из 17Следующая ⇒ Содержание книги
Поиск на нашем сайте
Основная трудность – наличие нескольких критериев, среди которых могут быть неформализованные, по которым следует сравнивать исходы. В этом случае возникает задача принятия решений при так называемом «векторном критерии» [1]-[3]. Случай 1 (построение сверток критериев). Пусть имеется совокупность m критериев: F 1(x), F 2(x), …, Fm (x), x Î X. Каждый из этих критериев максимизируемый. Требуется найти решение, которое окажется наилучшим с точки зрения выбираемого критерия. Для принятия решения составляют линейную свертку критериев, получая обобщенный критерий , где wi – вес соответствующего критерия, и решают задачу max F 0(x), x Î X. Одним из примеров в экономике является критерий приведенных затрат, получающийся из противоречивых между собой критериев капитальных и эксплутационных затрат. Можно привести еще один способ постороения свертки, обычно применяемый при измерении критериев в различных шкалах. Каждый критерий Fi (x), заменяют на и рассматривают задачу минимизации функционала , (1.1) где . Эту задачу можно интерпретировать как минимизацию суммы отклонений критериев от их максимальных значений. При таком формировании обобщенного критерия может возникнуть несоответствие, связанное с тем, что можно добиться высоких показателей по одним критериям за счет ухудшения показателей по другим критериям. Для ликвидации этих несоответствий вводят дополнительные условия: F i (x)≥ F i доп (1.2) и решают задачу (1.1) при этом ограничении. Случай 2 (перевод критериев в ранг ограничений). Для всех критериев, кроме одного (например первого) задают их наименьшие допустимые значения Fi доп и решают задачу max F 1(x) (1. 3) при ограничениях: Fi (x) ≥ Fi 2 доп., i= 1,2,3,…, m. Случай 3. (аппроксимационно–комбинаторный подход). Предположим, что для всех критериев j =1,2,3,…, n заданы числа Rj, характеризующие наибольшее допустимое отклонение j –го Fj (x) критерия от его оптимального значения Fj опт, т.е. известно, что решение, подлежащее внедрению должно удовлетворять ограничениям Fj (x) ≥ Fj опт– Rj, j =1,2,3,…, n Выбор решения, подлежащего внедрению, осуществляется из получившегося множества W на основе неформальных критериев, которым владеет лицо, принимающее решение. Этот подход предложен В.Р. Хачатуровым [Хачатур] и успешно применялся для дискретных задач. Случай 4 (оптимизация по Парето). Пусть все критерии F 1(x), F 2(x), …, Fm (x)минимизируемые, т.е. чем меньше их значение, тем предпочтительнее выбор.На множестве всех допустимых решений X, используя формализованные критерии F 1(x), F 2(x), …, Fm (x), x Î X строится порядок. Наибольшие элементы в смысле этого порядка принимаются за оптимальные. Рассмотрим оптимальность по Парето для случая, когда множество X конечное, т.е. X ={ x 1, x 2, x 3,…, xn }. Будем говорить, что x Î X предпочтительнее y Î X и записывать , если для всех i =1,2,3,…, m выполняется Fi (x)£ Fi (y), и существуют i, для которых это неравенство строгое. Таким образом, для любых x, y Î X либо , либо , либо они несравнимы. Наименьший в смысле этого предпочтения элемент является оптимальным по Парето. Напомним, что элемент множества x Î X называется наименьшим в смысле предпочтения , если не существует x Î X, такого, что . Выбор решения, подлежащего внедрению, осуществляется из множества Парето P на основе неформальных критериев, которым владеет лицо, принимающее решение. Примеры. Построение линейной свертки. Для демонстрации построения линейной свертки рассмотрим пример, приведенный в следующей таблице:
В ней X ={ x 1, x 2, x 3, x 4, x 5, x 6, x 7, x 8, x 9, x 10}, критерии F 1(x), F 2(x), …, F 5(x). В каждой строке таблицы указаны значения соответствующего критерия. Все критерии максимизируемые. Максимальные элементы по каждому критерию приведены в крайнем правом столбце. Зададим коэффициенты свертки, в следующей таблице они справа.
Таблица для свертки критериев имеет вид:
Ясно, что F 0(x 5)= F 0(x 7)= =5,3, т.е. оптимальными являются элементы x 5, x 7. Аппроксимационно–комбинаторный подход.
Множество допустимых решений одновременно по всем критериям { x 7, x 9}. Среди эти решений ЛПР произведет окончательный выбор. Оптимизация по Парето Рассмотрим пример, приведенный в следующей таблице:
В ней X ={ x 1, x 2, x 3, x 4, x 5, x 6, x 7, x 8, x 9, x 10}, критерии F 1(x), F 2(x), …, F 5(x). В каждой строке таблицы указаны значения соответствующей функции. В ней , x 8 и x 10 несравнимы между собой, они также являются оптимальными по Парето, так как не существует элементов, предпочтительнее, чем они.
Самостоятельная работа №1. Для данных, приведенных далее в таблицах выполнить: 1) Найти максимальные решения по каждому критерию. 2) Построить линейную свертку критериев и найти оптимальное решение, коэффициенты свертки взять из рассмотренного выше примера. 3) Найти множество решений в задаче согласно аппроксимационно–комбинаторного подхода, значения допустимых отклонений от оптимума взять из ранее решенного примера. 4) Считая все критерии, приведенные в таблице, минимизируемые, привести решения а) x и у, для которых б) x и у, которые несравнимые по предпочтению , в) оптимальные по Парето.
Таблицы вариантов заданий:
|
||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Последнее изменение этой страницы: 2016-06-29; просмотров: 264; Нарушение авторского права страницы; Мы поможем в написании вашей работы! infopedia.su Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Обратная связь - 18.218.70.79 (0.008 с.) |