Заглавная страница Избранные статьи Случайная статья Познавательные статьи Новые добавления Обратная связь FAQ Написать работу КАТЕГОРИИ: АрхеологияБиология Генетика География Информатика История Логика Маркетинг Математика Менеджмент Механика Педагогика Религия Социология Технологии Физика Философия Финансы Химия Экология ТОП 10 на сайте Приготовление дезинфицирующих растворов различной концентрацииТехника нижней прямой подачи мяча. Франко-прусская война (причины и последствия) Организация работы процедурного кабинета Смысловое и механическое запоминание, их место и роль в усвоении знаний Коммуникативные барьеры и пути их преодоления Обработка изделий медицинского назначения многократного применения Образцы текста публицистического стиля Четыре типа изменения баланса Задачи с ответами для Всероссийской олимпиады по праву Мы поможем в написании ваших работ! ЗНАЕТЕ ЛИ ВЫ?
Влияние общества на человека
Приготовление дезинфицирующих растворов различной концентрации Практические работы по географии для 6 класса Организация работы процедурного кабинета Изменения в неживой природе осенью Уборка процедурного кабинета Сольфеджио. Все правила по сольфеджио Балочные системы. Определение реакций опор и моментов защемления |
Понятие линейного программированияСодержание книги
Похожие статьи вашей тематики
Поиск на нашем сайте
Определение: Линейное программирование – это раздел математического, применяемый при разработке методов отыскания экстремума линейных функций нескольких переменных при линейных дополнительных ограничениях, налагаемых на переменные. По типу решаемых задач его методы делятся на универсальные и специальные. С помощью универсальных методов могут быть решены любые задачи линейного программирования. Специальные же методы учитывают особенности модели задачи, ее целевой функции и системы ограничений. Особенностью задач линейного программирования является то, что экстремума целевая функция достигает на границе области допустимых решений. Классические же методы дифференциального исчисления связаны с нахождением экстремумов функций во внутренней точке области допустимых значений. Отсюда – необходимость разработки новых методов. Математическая модель ЗЛП: при
Примеры экономических задач линейного программирования. Задача о наилучшем использовании ресурсов
Пусть некоторая производственная единица (цех, завод, объединение и т.д.), исходя из конъюнктуры рынка, технических или технологических возможностей и имеющихся ресурсов может выпускать n различных видов продукции (товаров), известных под номерами, обозначаемыми индексами j . Предприятие при производстве этих видов продукции должно ограничиваться имеющими видами ресурсов, технологий, других производственных факторов (сырья, полуфабрикатов, рабочей силы, оборудования, электроэнергии и т.д.). Пусть их число равно m, припишем им индекс i . Они ограничены, и их количества равны соответственно условных единиц. Таким образом, - вектор ресурсов. Известна экономическая выгода (мера полезности) производства продукции каждого вида, исчислимая, скажем, по отпускной цене товара, его прибыльности, издержкам производства, степени удовлетворения потребностей и т.д. Примем в качестве такой меры, например, цену реализации (), т.е. - вектор цен. Известны также технологические коэффициенты , которые указывают, сколько единиц i-го ресурса требуется для производства единицы продукции j-го вида. Матрицу коэффициентов || || называют технологической матрицей и обозначают А: . Обозначим через Х= - план производства, показывающий какие виды товаров нужно производить и в каких количествах, чтобы обеспечить предприятию максимум объема реализации при имеющихся ресурсах.
Так как - цена реализации единицы j-той продукции, цена реализации единиц будет равна , а общий объем реализации: . Это выражение – целевая функция, которую нужно максимизировать. Так как - расход i-го ресурса на производство единиц j-той продукции, то, просуммировав расход i-го ресурса на выпуск всех n видов продукции, получим общий расход этого ресурса, который не должен превосходить () единиц: Чтобы искомый план Х= был реален, наряду с ограничениями на ресурсы нужно наложить условие неотрицательности на объемы выпуска продукции: , (). Таким образом, модель задачи о наилучшем использовании ресурсов имеет вид: Найти: , при ограничениях (), , (). Т.к. переменные входят в функцию Z(X) и систему ограничений только в первой степени, а показатели , , являются постоянными в планируемый период, то задача является задачей линейного программирования.
Примеры экономических задач линейного программирования. Задача о выборе оптимальных технологий
В задаче о наилучшем использовании ресурсов определяется оптимальный план выпуска продукции. Пусть при производстве какого-то общественно необходимого продукта используется n технологий. При этом требуется m видов ресурсов, заданных объемами (). Эффективности, т.е. количество конечной продукции (в рублях), производимой в единицу времени по j-той () технологии, обозначим через . Пусть, далее, - расход i-го ресурса в единицу времени по j-той технологии. В качестве неизвестной величины примем интенсивность использования j-той технологии, т.е. время, в течении которого продукция производится по j-той технологии. Пренебрегая временем переналадок, необходимыми для перехода от одной технологии к другой, получим следующую математическую модель задачи: найти план интенсивностей использования технологий Х= , обеспечивающий максимум выпуска в стоимостном выражении: , при ограничениях на лимитируемые ресурсы (), и условия неотрицательности , ().
Примеры экономических задач линейного программирования. Задача о смесях
В различных отраслях народного хозяйства возникает проблема составления таких рабочих смесей на основе исходным материалов, которые обеспечивали бы получение конечного продукта, обладающего определенными свойствами. К этой группе относят задачи о выборе диеты, составления кормового рациона в животноводстве, шихт в металлургии, горючих и смазочных смесей в нефтеперерабатывающей промышленности и т.д. Высокий уровень затрат на исходные сырьевые материалы и необходимость повышения эффективности производства выдвигает на первый план следующую задачу: получить продукцию с заданными свойствами при наименьших затратах на исходные сырьевые материалы. Модель задачи о наилучшем составе смеси рассмотрим на примере задачи о диете. Имеются пищевые продукты, известные под номерами 1, 2, 3,..., j,..., n. Они содержат различные питательные вещества, обозначаемые номерами 1, 2, 3,..., i,..., m (углеводы, белки, жиры, витамины, микроэлементы и др.). Единица j-го продукта содержит единиц i-го питательного вещества. Для нормальной жизнедеятельности в заданный промежуток времени нужно потреблять не менее единиц i-го питательного вещества. Обозначим через стоимость единицы продукции j-го вида. Требуется выбрать рацион минимальной стоимости, содержащие необходимые количества питательных веществ. План задач – это количества продуктов каждого вида, обеспечивающие необходимое количество питательных веществ при минимальных затратах на исходные продукты. Математическая модель задачи: Найти: , при ограничениях (), , ().
Примеры экономических задач линейного программирования. Транспортная задача
Рассмотрим простейший вариант модели транспортной задачи, когда речь идет о рациональной перевозке некоторого однородного продукта от производителей к потребителям, при этом имеется баланс между суммарным спросом потребителей и возможностями поставщиков по их удовлетворению. Причем, потребителям безразлично, из каких пунктов производства будет поступать продукция, лишь бы их заявки были полностью удовлетворены. От схемы прикрепления потребителей к поставщикам существенно зависит объем транспортной работы, возникает задача о наиболее рациональном прикреплении, правильном направлении перевозок грузов, при котором потребности полностью удовлетворяются, вся продукция от поставщиков вывозится, а затраты на транспортировку минимальны. Задача формулируется так: имеется m пунктов производства, в каждом из которых сосредоточено () единиц однородного продукта. Этот продукт нужно доставить n потребителям, где потребность составляет () единиц. Причем . Известны величины - затраты на перевозку единицы продукта из i-го пункта производства в j-тый пункт потребления. Обозначим через количество продукта, перевозимое из i-го пункта производства в j-тый пункт потребления. Матрица С=|| || называется матрицей тарифов Матрица Х=|| || - матрицей перевозок: С целью удобства построения математической модели матрицы тарифов и перевозок совмещают в одну, именуемую макетом транспортной задачи:
Математическая модель транспортной задачи: целевая функция, описывающая транспортные затраты, , минимизируется при ограничениях на возможности поставщиков: весь продукт из пункта производства должен быть вывезен:
(); на спрос потребителей, который должен быть удовлетворен: (); при условии неотрицательности переменных, исключающем обратные перевозки (, ).
1.9. Основные виды записи задач линейного программирования
Определение: Общей задачей линейного программирования называют задачу: при ограничениях (); (); (); (); - произвольные (), где , , - заданные действительные числа. Определение: Симметричной формой записи задачи линейного программирования называют задачу: при ограничениях (); (); или задачу при ограничениях (); (). Определение: Канонической формой записи задачи линейного программирования называют задачу: при ограничениях (); (). Рассмотрим еще два вида записи- матричную и векторную. Введем обозначения: , , , , где С – матрица-строка; А – матрица системы уравнений, Х – матрица-столбец переменных, - матрица-столбец свободных членов. Каноническая форма записи примет вид: или max Z=CX при ограничениях , или , . Запишем задачу линейного программирования в векторной форме: , ,..., ,..., . Тогда задача линейного программирования в канонической форме записи имеет вид: при ограничениях , , где - скалярное произведение векторов и .
1.10. Способы преобразования
При необходимости задачу минимизации можно заменить задачей максимизации и наоборот. Для функции одной переменной это утверждение очевидно. В самом деле, если - точка максимума функции y=f(x), то для функции y=-f(x) она является точкой максимума, так как графики функций f(x) и –f(x) симметричны относительно оси абсцисс (рис. 1). Итак, min f() = max (-f()). Рис. 1. Графики функций y=f(x) и y=-f(x). То же самое имеет место в случае функции n переменных: .
|
||||||||||||||||||||||||||||||||
Последнее изменение этой страницы: 2016-06-07; просмотров: 501; Нарушение авторского права страницы; Мы поможем в написании вашей работы! infopedia.su Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Обратная связь - 3.137.198.181 (0.013 с.) |